
Plankton: Reconciling Binary Code and Debug
Information

Anshunkang Zhou
azhouad@cse.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Chengfeng Ye
cyeaa@cse.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Heqing Huang∗
heqhuang@cityu.edu.hk

City University of Hong Kong
Hong Kong, China

Yuandao Cai
ycaibb@cse.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Charles Zhang
charlesz@cse.ust.hk

Hong Kong University of Science and
Technology

Hong Kong, China

Abstract
Static analysis has been widely used in large-scale software
defect detection. Despite recent advances, it is still not prac-
tical enough because it requires compilation interference
to obtain analyzable code. Directly translating the binary
code using a binary lifter mitigates this practicality prob-
lem by being non-intrusive to the building system. However,
existing binary lifters cannot produce precise enough code
for rigorous static analysis even in the presence of the de-
bug information. In this paper, we propose a new binary
lifter Plankton together with two new algorithms that can
fill the gaps between the low- and high-level code to pro-
duce high-quality LLVM intermediate representations (IRs)
from binaries with debug information, enabling full-fledged
static analysis with minor precision loss. Plankton shows
comparable static analysis results with traditional compila-
tion interference solutions, producing only 17.2% differences
while being much more practical, outperforming existing
lifters by 76.9% on average.
ACM Reference Format:
Anshunkang Zhou, Chengfeng Ye, Heqing Huang, Yuandao Cai,
and Charles Zhang. 2024. Plankton: Reconciling Binary Code
and Debug Information. In 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA,

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0385-0/24/04. . . $15.00
https://doi.org/10.1145/3620665.3640382

USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3620665.3640382

1 Introduction
Static analysis has been widely used in detecting various soft-
ware defects in C/C++ programs [34–36, 53, 85, 94]. Unfor-
tunately, despite this tremendous progress, one previously-
ignored fact is that the requirement of compilation inter-
ference is essentially the last mile of modern static analy-
sis. Conventional static analysis [3, 13, 16, 33, 37, 82–84]
requires access to the program building process to obtain
analyzable code, which is realized by interfering with the
original compilation configuration with a custom compiler
or parser. For example, SVF [84] requires the end-users to
usewllvm [20] (a wrapper for Clang) to compile the project.
However, compilation interference is not always feasi-

ble due to two reasons. First, modern building systems are
becoming increasingly complex and diverse [48, 66]. For ex-
ample, the C++ language has over 20 building systems [23]
and 36 compilers [24]. Supporting such a large number of na-
tive building systems is extremely difficult and error-prone.
For example, Coverity Scan [3], one of the most success-
ful commercial static analysis tools, has been striving to
achieve compatibility with various toolchains for over 20
years [31, 76]. Despite tremendous efforts, the success of
compilation interference is still not guaranteed. For example,
both Coverity Scan [3] and SVF [84] were reported to fail
because they could not compile the source code with their
custom compilers [2, 4, 6, 12]. Second, the accessibility of the
software building procedure is not always guaranteed [31].
For example, the source code and its compilation pipeline
are often unavailable for cloud-based code scanning services.
The above difficulties severely hinder the deployment of ma-
ture static analysis systems to the industrial environment,
which we refer to as the last mile problem.

Instead of walking the last mile with insurmountable ef-
fort, we can bypass the problem by directly using the end
product of the building process — the binaries themselves.

1

https://doi.org/10.1145/3620665.3640382
https://doi.org/10.1145/3620665.3640382
https://doi.org/10.1145/3620665.3640382

1 void foo(int i)

2 {

3 long* v = calloc(2, 8);

4 long t = 1;

5 {

6 char n[24];

7 n[i] = 'a';

8 }

9 long a[3];

10 a[i] = 2;

11 a[0] += v[0];

12 free(v);

13 }

(a) Source code of foo.

1 ; void foo(int i) ; rdi=i

2 ... ;omit

3 call calloc

4 mov rbx , rax ;v=calloc

5 mov [rsp+32], 1 ;t=1

6 mov [rsp+rdi *8+8] ,61h ;n[i]='a'

7 ... ;omit

8 mov [rsp+rdi *8+8] ,2 ;a[i]=2

9 mov rax , [rbx]

10 add [rsp+8], rax ;a[0]+=v[1]

11 mov rdi , rbx

12 call free ;free(v)

13 ret

(b) Assembly code of foo.

Source Binary

!

!/#

#

Stack
Top

$

$

24

24

8

8

24

(c) Evolution of the stack frame.

Γ ⊢ v : ptr (τ)
Γ ⊢ (s = load v) : τ

(d) Figure 1a’s LOAD typing rule.

Γ ⊢ v : α
Γ ⊢ (s = load v) : α

(e) Figure 1b’s LOAD typing rule.

11:a[0]+=v[0]

10:a[i]=2

3:v=calloc

7:n[i]='a'

1:i

12:free(v)

(f) DDG of Figure 1a.

10:[rbx]+[rsp+8]

8:[rsp+rdi*8+8]=2

3:rax=calloc

6:[rsp+rdi*8+8]=61h

1:rdi

12:free(rbx)

(g) DDG of Figure 1b.

Figure 1. Dots in data-dependence graph (DDG) are marked by code lines. In Figure 1d and Figure 1e, Γ maps variables to
their types, ptr (τ) is the type of ordinary pointers to τ , α is a uni-type to describe the untyped assembly language.

Compared with the conventional solution, the binary-based
one obtains code for analysis by binary lifting [5, 9, 11, 63],
which is non-intrusive to the software building system and
thus is unlikely to fail in real-world scenarios. Therefore, the
remaining problem is: Can we achieve similar static analysis
results on the lifted code as the compiled source code?

1.1 Challenges
Rigorous static analysis requires considerable source-level
information to be present in the target code to reason about
their semantics [78]. Existing state-of-the-art static anal-
ysis mainly leverages underlying assumptions about two
program entities to develop their algorithms, i.e., variable
boundaries [60] and type information [68]. However, the bi-
nary code is not naturally accompanied by such information,
and recovering it from the plain binary is still an undecidable
problem [52, 89–91], which could greatly affect the preci-
sion of static analysis. We use Figure 1 to briefly introduce
how the loss of variable boundaries and type information
in binary code affects the construction of data-dependence
graph (DDG), one of the most basic static analyses.
Variable boundaries. Unlike the source code, where the
memory is separated into disjoint variables [61], the assem-
bly code flattens the memory space by allowing memory
access across variables [60] and possible overlapping ob-
jects [54]. For example, the memory write regarding n[i] at

Line 7 and the memory read from a[0] at Line 11 in Figure 1a
do not have any data dependences because every local vari-
able is associated with a distinct memory block (left-hand
side of Figure 1c). Therefore, the DDG has no edge between
those two lines in Figure 1f. However, the compiler places n
and a into the same stack slot ([rsp+8]) in the binary code
since they have non-overlapping scopes (right-hand side of
Figure 1c), resulting in a bogus dependence between Line 6
and Line 10 in Figure 1b. Therefore, there is an extra edge
between them in Figure 1g.
Type information. Binary code totally discards high-level
type information and allows operations between arbitrary
typed values. For example, the typing rule for the memory
read in source code (Figure 1d) requires the operandv to be a
pointer to type τ , and the type of the loaded value s is also τ .
In contrast, the assembly code (Figure 1e) uses a uni-type α
for all operands. Existing static analysis tools exploit the type
information for efficiency [79], and losing it might lead to
broken results. For example, the pointer returned by calloc
at Line 3 in Figure 1a has data dependences with Line 11 and
Line 12. In Figure 1b, the memory allocated by calloc is re-
turned and manipulated through two integer-typed registers
rax and rbx (Line 9 and Line 12)), which might result in bro-
ken data-flows in some static analyzers (e.g., SVF) since they
ignore pointer values that behave like an integer. Therefore,
the constructed DDG in Figure 1g lacks two edges starting

2

from Line 3 to its reference sites and will even result in a
false alarm of memory leak bug because the calloc does
not reach a free function. Moreover, heap objects cannot be
modeled properly without correct type information at the
call sites of memory allocation functions [55].
Fortunately, while the plain binary is not a desired sub-

stitution for the compiled source code, we found that in a
scenario like software static analysis, the debug informa-
tion [45, 62, 67] is also indispensable because it is extremely
useful for debugging [14, 21], crash diagnosis [43], and profil-
ing [17]. For example, modern operating systems all provide
debug symbol packages [18, 22], and the latest Firefox on
MacOS is built with embedded debug information [62]. In a
small study conducted by us that involves 100 famous C/C++
projects from Linux and GitHub (projects with the most
stars), we found that 100% of them support emitting debug
information in their binary output. Therefore, a more feasible
solution would be considering the debug information during
binary lifting, which maps the binary to the source code and
can help solve numerous undecidable reverse engineering
problems [73].
Despite its usefulness, the debug information only pro-

vides a subset of source-level information since compilers
cannot backward map all binary code to the source [28, 62,
74, 95], which still constrains the precision of lifted code and
static analysis because variable and type information are still
missing in some code fragments (illustrated in § 2).

1.2 Our Technique
In this paper, we propose a new binary lifter Plankton to-
gether with two new algorithms to produce high-quality
LLVM intermediate representations (IRs) from binaries with
debug information, enabling full-fledged static analysis with
minor precision loss. Our key insight is that code fragments
with data-dependences are also dependent in terms of their
source-level properties, which allows us to fill in the blan-
kets in the binary-to-source mapping with the incomplete
debug information by additional static analysis and code
transformations. More specifically, we first propose a stack
disambiguation algorithm to reconstruct connections be-
tween variable entities and stack references in the lifted
code. Our intuition is that in source code, references to
stack slots can be mapped to disjoint memory blocks rep-
resented by top-level variables visible at specific program
points, which is essentially the scope information. There-
fore, our algorithm computes a scope for each variable by
extending existing ones denoted by the debug information.
It leverages data-dependences between instructions to group
stack memory references and uses structural invariants to
form well-structured variable scopes. Second, we propose
a type enforcement algorithm to recover proper types for
all values inside the lifted code. Our intuition is that all op-
erations in a strongly-typed language such as C/C++ obey
strict typing rules, meaning that values with improper types

must be explicitly converted to satisfy those rules to keep
the code’s validity. Therefore, the usage of type conversions
indicates the degree of type correctness because the code
with more correctly typed values needs fewer conversions.
Starting from a portion of value types, our algorithm consis-
tently eliminates type conversions with semantic-preserving
code transformations and propagates the results to all code
fragments to find a fixed point that can maximize the type
correctness level.

We have implemented Plankton in C/C++ on top of the
LLVM compiler infrastructure [58]. We evaluated it with
real-world programs using two state-of-the-art static analy-
sis tools, SVF [84] and Pinpoint [83]. Experimental results
show that Plankton is able to fully utilize source-level static
analysis techniques by showing comparable bug-finding re-
sults with traditional compilation interference solutions, pro-
ducing only 17.2% differences while being much more practi-
cal, outperforming existing lifters by 76.9% on average. Our
further experiments also prove that most of the remaining
result differences are caused by the inherent “randomness”
of the static analysis, showing that Plankton is as effec-
tive as the traditional compilation interference method for
real-world usage.

In summary, this paper makes the following contributions:

• We propose two new algorithms to produce precise
LLVM IRs from binaries with debug information to
enable full-fledged static analysis.
• We implement a new binary lifter Plankton that in-
corporates the proposed algorithms. We also spent
significant engineering efforts handling complicated
cases in parsing debug information and lifting.
• We conduct experiments to show that Plankton has
sufficiently good scalability and precision, producing
only 17.2% differences compared with the compiled
source code while being much more practical, outper-
forming existing lifters by 76.9% on average.

2 Motivation
2.1 Motivating Example
Translating the binary product of the software into analyz-
able code representations has greatly potential to enable a
more practical static analysis procedure because it is non-
intrusive to the building system. However, applying static
analysis designed for high-level languages to the low-level
assembly code could cause great precision loss because of
the huge gaps between these two languages.
We use a motivating example to show the two core dif-

ferences between the binary and the source code that could
affect the static analysis. Figure 2a shows the source code of
function foo, and Figure 2b shows the corresponding X86_64
assembly code obtained by compiling foo with “Clang -O1
-g”. We use the sc.qitem=self->qitem statement at Line 7

3

1 int foo(struct Cmd* self)

2 {

3 struct Cmd* t = init();

4 struct Item* item = NULL;

5 struct Ctx sc = {0};

6 char* cause = NULL;

7 sc.qitem = self ->qitem;

8 sc.argv = t->argv;

9

10 args_proc (&sc.argc ,&sc.argv);

11 if (! get_ctx (&sc, &cause))

12 {

13 char msg [10];

14 msg [2] = ':';

15 cmd_proc(sc.argv);

16 }

17 else

18 {

19 struct LogClass log;

20 dump_log (&log , log.msg);

21 cmd_proc(sc.argv);

22 }

23 }

(a) Source code

B0:

...

lea r14 , [rsp +32] ; &sc.argc

mov rax , [rdi+8] ; self ->qitem

mov [rsp+48], rax ; sc.qitem

mov rax , [r15] ; t->argv

mov [rsp+24], rax ; &sc.argv

lea rsi , [rsp +24] ; &sc.argv

mov rdi , r14 ; &sc.argc

call args_proc

lea rdi , [rsp +16] ; &sc

...

B1:

lea rsi , [rsp +68] ; log.msg

lea rdi , [rsp +64] ; &log

call dump_log

mov rdi , [rsp +24] ; sc.argv

call cmd_proc

...

B2:

mov [rsp+66], 3Ah ; msg[2]

mov rdi , [rsp +24] ; sc.argv

call cmd_proc

(b) Assembly code

define i32 @foo(%Cmd* %self) {

B0:

%msg = alloca [10 x i8]

%log = alloca %LogClass

%sc = alloca %Ctx

%cause = alloca i8*

%field.1 = getelementptr %sc, 0, 2

%field.2 = getelementptr %sc, 0, 1

%field.3 = getelementptr %sc, 0, 5

...

%t21 = getelementptr %self , 0, 1

%t22 = load %Item** %t21

store %t22 , %field.3 ; sc.qitem

%t23 = getelementptr %t19 , 0, 0

%t24 = load i8** %t23 ; t.argv

store %t24 , %field.2 ; sc.argv

...

%t25 = call @get_ctx (%sc, %cause)

...

B2:

%t33 = load i8** %field.2

call void @cmd_proc (%t33)

}

(c) LLVM IR produced by Plankton

Figure 2. A motivating example that shows the original source code of function foo, the compiled assembly code, and the
translation result of Plankton. All three pieces of code are simplified for readability. Colored lines show corresponding code
statements (one source line might be mapped to multiple assembly instructions). The annotations aim at easier understanding
and do not represent the actual debug information to source code mapping.

in Figure 2a to illustrate the problem, which is compiled to
the mov [rsp+48],rax instruction at Line 5 in Figure 2b.
Variable boundaries. In Figure 2a, sc has an indepen-

dent memory block so that sc.qitem can only be accessed
when there is a reference to sc. In contrast, in Figure 2b,
all local variables are placed in a flat stack memory and
are accessed by relative offset to the rsp register. Therefore,
the stack slot [rsp+48], which corresponds to sc.qitem,
might be accessed whenever there are references relative to
the rsp, which forces static analysis to reason about bogus
dependences relations and might cause precision loss.

Type information. In Figure 2a, the statement follows
strict typing rules, and values have proper types, i.e., it writes
an Item typed pointer to sc.qitem, which is also an Item
typed pointer. However, in Figure 2b, the value held by rax
register and [rsp+48] can have arbitrary types, which could
mislead static analysis to produce wrong results.
Even the debug information is still insufficient to fill the

gap between binary and source code since compilers cannot
backward map all binary code to the source [28, 62, 95]. For
example, it tells that the [rsp+16] at Line 11 in Figure 2b is
the sc variable in the source code but does notmap [rsp+24]
at Line 17 to any variables.

2.2 Limitations of Existing Approaches
Existing binary lifters [5, 8, 9, 11, 42] all suffer from numer-
ous limitations that make them unable to support rigorous
static analysis. First, lifters such asMcSema [5] output the
emulation-style IR that faithfully emulates the machine exe-
cution, which is too low-level to support source-level static
analysis [63]. Second, lifters such as RetDec [11] only di-
rectly apply knowledge inside the debug information to the
lifted code without being aware of its incompleteness and
thus suffer from significant precision loss.

Moreover, we found that even the most advanced decom-
pilers, such as IDA Pro [1] and Ghidra [15], still cannot pre-
cisely translate binaries with debug information because
their algorithms usually depend on predefined rules or pat-
terns. As a result, in the decompiled code of IDA Pro, stack
references at Line 3 and Line 8 in Figure 2b are declared
as independent values instead of sc’s fields. Additionally,
significant manual efforts are needed to re-compile outputs
of those decompilers into analyzable code representations
and are not always feasible for large programs [65].

4

1 B0:

2 %argv = getelementptr %sc, 0, 1

3 ; mov rax , [r15]

4 %41 = load i64* @r15

5 %42 = inttoptr i64 %41 to %Cmd*

6 %43 = ptrtoint %Cmd* %42 to i64

7 %44 = inttoptr i64 %43 to i64*

8 %45 = load i64* %44

9 store i64 %45, i64* @rax

10 ; mov [rsp+24], rax

11 %47 = load i64* @rax

12 %48 = inttoptr i64 %47 to i8*

13 store i8* %48, i8** %argv

(a) Vanilla LLVM IR.

B0:

%argv = getelementptr %sc, 0, 1

; mov rax , [r15]

%47 = inttoptr i64 %36 to %Cmd*

%48 = bitcast %Cmd* %47 to i64*

%49 = load i64* %48

; mov [rsp+24], rax

%52 = inttoptr i64 %49 to i8*

store i8* %52, i8** %argv

(b) After optimizations.

B0:

%47 = getelementptr %30, 0, 0

%48 = load i8** %47

%49 = ptrtoint i8* %48 to i64

%52 = inttoptr i64 %49 to i8*

store i8* %52, i8** %argv

(c) After 1st transformations.
B0:

%47 = getelementptr %30, 0, 0

%48 = load i8** %47

store i8* %48, i8** %argv

(d) After 2nd transformations.

Figure 3. The evolution of the LLVM IR translated from Line 6 and Line 7 in Figure 2b. Some instructions are omitted.

2.3 Our Technique
Insight. Our key insight to overcome the above limitations
is that code fragments with data-dependences are also depen-
dent in terms of their source-level properties, which allows
us to fill in the blankets in the binary-to-source mapping
with the incomplete debug information. Based on this in-
sight, we propose two new algorithms to better resolve the
two most critical problems in binary lifting.

2.3.1 Variable Boundaries. The flattened memory in bi-
nary code should be separated into disjoint variables to en-
able static analysis. However, existing lifters only map a
portion of stack references to variable entities due to the
incompleteness of debug information. For example, the stack
reference at Line 11 in Figure 2b is mapped to the sc variable,
but [rsp+24] at Line 17 does not have any mappings.
Intuition. Our intuition is that the live range [32] of iden-
tified variables allows us to connect binary-level memory
references to source-level variables. For example, with com-
plete scope information of sc, we can tell that [rsp+24] at
Line 17 actually is a field of the sc variable.
Therefore, our first algorithm infers a scope for each lo-

cal variable and uses such information to recover precise
variable information. More specifically, it extracts a set of
constraints by exploiting several scope invariants (e.g., over-
lap variables have disjoint scopes) and data-dependences
between memory references through static analysis, which,
when taken together with the debug information, allows us
to solve them uniformly to obtain the final scope of each
variable. For example, our algorithm collects two data-flow
facts for sc referred at Line 11 in Figure 2b. First, the accessed
value is defined by Line 7 by moving rax to [rsp+24]. Sec-
ond, Line 22 loads the same value from [rsp+24] since there
is no redefinition in the path between these two lines. They
indicate that [rsp+24] at these three lines actually refer
to the same value and thus belong to the same local vari-
able. Then, Plankton combines the obtained facts with a

scope invariant that the variable scope should be continuous
and draws a scope for [rsp+24] (sc) according to the CFG,
which covers sc variable at Line 11. Moreover, the byte size
of sc ([rsp+16]) in the binary code is 40, which means that
the [rsp+24] must be the field of sc instead of an indepen-
dent variable since 24− 16 < 40 and different variables must
not overlap. Therefore, the scope of sc can be extended to
Line 7 - Line 22 after the above analysis.

2.3.2 Type Information. All values inside the lifted IR
should be assigned with correct types to facilitate static anal-
ysis. However, existing lifters still could leave a large number
of values with improper types because debug information
only maps a small portion of values to their correct types. For
example, r15 is marked as Cmd* type at Line 6 in Figure 2b,
but rax at Line 7 is untyped.
Intuition. Our intuition is that all operations in a strongly-
typed language obey strict typing rules [58], meaning that
values with improper types must be explicitly converted
to satisfy those rules. Therefore, if we can eliminate such
type conversions while keeping the validity of the LLVM IR,
then all operations can be assigned with proper types, which
further indicates that the usage of type conversions reflects
the degree of type correctness because the code with more
correctly typed values needs fewer conversions.
Based on this intuition, our second algorithm leverages

semantic-preserving code transformations to consistently
eliminate type conversions and assign correct value types.
For example, Figure 3a shows the vanilla LLVM IR directly
translated from the assembly instructions at Line 6 and Line 7
in Figure 2b. Our algorithm first leverages code optimiza-
tions to remove redundant operations in Figure 3a and make
dependences between values more explicit (Figure 3b). Then,
it transforms the inttoptr and bitcast instructions into a
getelementptr and modifies the type of the load instruc-
tion (Figure 3c). The loaded value is then translated to the
original type by inserting a ptrtoint to keep the validity of

5

code. After this step, we not only assign the correct type to
the load instruction but also “propagate” type hints forward
to the next instruction. Further applying transformations
gives Figure 3d, which has no type conversions.

Figure 2c shows the translation result of Plankton, which
is very similar to the one compiled from the source code.

3 Stack Disambiguation
In this section, we will introduce how Plankton tackles the
most challenging part of recovering source-level variables
in the lifted code, i.e., separating the stack memory into
disjoint blocks. For global memory, Plankton adopts similar
algorithms with existing methods [30], details are omitted.

Plankton first obtains an initial result by analyzing oper-
ations involving the stack pointer (e.g., rsp in X86_64) and
transforms them into references to stack slots [1, 11, 15, 29,
49]. At the same time, the debug information is encoded by
annotating some stack slots with types and names.

Example 3.1. In Figure 2b, stack operations at Line 11 and
Line 17 are transformed into references to stack slots (LLVM
alloca) but only Line 11 is further mapped to the sc variable.

Then, it infers a live range [32] (scope) for each identified
variable with Algorithm 1. It infers a must (§ 3.1) and a
may (§ 3.2) scope for interference stack slots (Line 2), which
could be variables with non-overlapping scopes or belong to
the same variable or its fields. We now define interference:

Definition 3.1. Two stack slots x1 and x2 interfere (overlap)
if they have the same stack memory offset or one slot occupies
the middle of the other.

Example 3.2. [rsp+16] at Line 11 and [rsp+24] at Line 17
in Figure 2b are a pair of stack slots with interference because
[rsp+16] is mapped to a variable with size 40 (sc) and is
larger than their distance inside the memory.

3.1 Must Scope Inference
The must scope is a precise but under-approximated live
range for a specific stack slot v (Line 4 - Line 18). The set
φmust represents the must scope for v , which is essentially
a set of instructions where v is visible. Initially, φmust only
contains all direct use sites of v since a variable must be
visible where it is used (Line 4).

The algorithm first collects the set of program points (σu)
wherev must be visible with data-flow analysis that concerns
how values are defined and used (Line 6). More specifically, if
a value is stored into v , we add all instructions that load the
stored value in v to σu . Similarly, if a value is loaded from v ,
we find all instructions that store the loaded value to v and
mark them as must live sites of v . Moreover, we also track
values loaded and stored through registers by performing
a lightweight intra-procedural pointer analysis to find alias
relations between stack slots and registers.

Algorithm 1: Scope Inference
Input: Function F after recovering stack slots
Output :Updated Function F with mapped variables

1 Function StackDisambiguation(F):
2 S ← stack slots that have overlapping memory
3 foreach v in S do ▷ collect scope constraints
4 φmust ← get all direct use sites of v ▷ must scope
5 foreach u in φmust do ▷ collect data-flow facts
6 σu ← data-flow facts regarding u
7 φmust ← φmust ∪ σu

8 φw ← φmust ▷ worklist for applying invariants
9 while φw , ∅ do
10 u ← φw .popBack()
11 φ ′w ← applyInvs(u, φmust) ▷ apply invariants
12 φmust ← φmust ∪ φ

′
w

13 φw ← φw ∪ φ
′
w /φmust

14 foreach v in S do ▷ merge stack slots that belong to the
same variable

15 Sv ← stack slots overlap with v
16 foreach v ′ in Sv do
17 if φmust (v) ∩ φmust (v

′) , ∅ then ▷ both live
18 Collapse(v , v ′)

19 Qf ← reverse post order of F ▷ calculate may scope
20 Qb ← post order of F
21 foreach I in F do
22 USE[I],KILL[I],OVER[I] ← init(φmust) ▷ init sets

23 while changes to any OUT or IN occur do ▷ backward
24 foreach instruction I in Qf do
25 OUT [I] ←

⋃
S ∈succ[I](IN [S]) −OVER[I]

26 IN [I] ← USE[I] ∪ (OUT [I] − KILL[I])

27 while changes to any OUT or IN occur do ▷ forward
28 foreach instruction I in Qb do
29 IN [I] ←

⋃
P ∈pred [I](OUT [P]) −OVER[I]

30 OUT [I] ← USE[I] ∪ (IN [I] − KILL[I])

Example 3.3. The instruction at Line 3 in Figure 2b stores
the address of [rsp+32] to r14; therefore, reading memory
pointed to by r14 is equivalent to reading from [rsp+32]
before r14 is assigned with another value, and the corre-
sponding instructions will be added to σu .

However, program points collected by the above data-flow
analysis could spread across the whole function and the
result (φmust ∪ σu) may not form a well-defined continuous
variable scope. Therefore, Plankton further leverages a set
of scope invariants to refine and expand the result obtained
from data-flow facts (Line 10 - Line 13). The intuition is that
in a high-level language, the scope of local variables should
respect certain control-flow structures [56], which applies
to the compiled binary code. For example, C/C++ programs
usually have a naturally scoped structure, where the lifetime

6

First Use
Last Use

!!

!" !#

!!

!"

!!

!#!"

!#

!!

!#!"

"#$%&'%#(3.2

"#$%&'%#(3.3

"#$%&'%#(3.5

(a) (b)

(c)(d)

Figure 4. An illustration of scope invariants.

of data is bounded by curly brackets. The basic principle of
variable scope is that each scope has to be continuous, and
two different scopes are either the same, nested, or disjoint.
More formally:

Invariant 3.1. Let variables x1 and x2 have scopes σ1 and σ2.
Then, both σ1 and σ2 are continuous, and either σ1 and σ2 are
the same, disjoint or nested, but not overlapping:
(σ1 = σ2) ∨ (σ1 ∩ σ2 = ∅) ∨ ((σ1 ⊂ σ2) ∨ (σ2 ⊂ σ1))

The implication of Invariant 3.1 is that given some pro-
gram points that a variable must live, we can infer its com-
plete live range using additional structure analysis, resulting
in several derived invariants.

We use Figure 4 to show how scope invariants are used to
infer variable scopes. Two different kinds of lines represent
the first and the last use site of a stack slot, which are also
identified as must live program points by the previous data-
flow analysis. Since the scope for each variable is continuous,
the following invariant holds for variables:

Invariant 3.2. If a variable x is visible at two reachable pro-
gram points pi and pj , then it is also visible at all program
points between pi and pj , denoted as

〈
pi ,pi+1, ...,pj

〉
.

Example 3.4. By applying Invariant 3.2 to Figure 4a, we can
obtain Figure 4b, which includes all program points between
the start and end use sites into the scope of the stack slot.

In a CFG, each basic block can be viewed as an independent
scope bounded by curly brackets. Therefore, if a variable
scope contains more than one basic block, then the scope
should fully cover each block. Otherwise, the variable scope
will overlap with the scope of individual basic blocks. Some
compilers further optimize the use of stack slots by taking
their first uses as the lifetime start [19]. However, it is hard
to determine the end of lifetime statically, so compilers still
use the end of declaration scope as the end of stack slots’
lifetime [50]. Therefore, we have the following invariant:

Invariant 3.3. If a variable x is visible at more than one basic
block, its scope fully covers all blocks except the starting one.

Example 3.5. In Figure 4b, the variable scope partially cov-
ers B0 and B2. Therefore, it can be extended to Figure 4c by
including the whole B2 in the scope.

The start and end program points of the variable scope
should have dominance relations:

Invariant 3.4. The end/start program points of the scope
should (post-) dominate the start/end program points.

, which can further derive the following invariant:

Invariant 3.5. If a variable x is visible at some program
points inside block B and one of B’s successors (predecessors)
B′. Then x must live at B’s other successors (predecessors) that
are unreachable from B′.

Example 3.6. In Figure 4c, the end of the scope in B2 does
not post-dominate the start in B0. Therefore, B1 should also
be included in the scope, which gives us Figure 4d.

Additionally, all aggregate typed variables should respect
the following invariant:

Invariant 3.6. A variable x is visible at all program points
where any of x ’s fields are visible.

A worklist-based algorithm iteratively applies the above
invariants to all live sites ofv (Line 11). Initially, the worklist
φw only contains all use sites obtained from data-flow facts
φmust . In each iteration, function applyInvs analyzes one
instruction u against all the other live sites of v using in-
variants 3.1 - 3.6, and the returned set φ ′w contains extended
live sites of v (Line 11). Newly discovered live sites (φ ′w) are
added to the worklist and φmust (Line 12 and Line 13). The al-
gorithm continues until φw becomes empty. φmust contains
all must live sites of v .
The obtained must live scopes for stack slots are further

used as scope constraints to reason about relations between
stack slots and top-level variables. For each stack slot v ,
stack slots that overlap with it are identified as Sv (Line 15).
If a program point exists where v and one of its overlapping
counterpartv ′ both live,v andv ′ are collapsed using a union-
find data structure (Line 18) since they must belong to the
same variable. All collapsed slots are extended to share the
samemust scope and are made to belong to the same variable
when updating the function.

3.2 May Scope Inference
Since the must scope is an under-approximation, it might
miss some instructions where the variable is visible. More-
over, such incomplete scope information might break data-
dependence relations between memory references and hurt
the soundness of static analysis.

7

May scope of msg

Must scope of log Must scope of msg

!!

!" !#

"#$%&$'
!!

!" !#

!$!$

!!

!" !#

!$

(a) (b) (c)

!&()%&$'

May scope of log

Figure 5. May scope inference.

Example 3.7. Consider the stack slot accessed ([rsp+64])
at Line 15 in Figure 2b, which is identified as the variable
log. The must scope of log only contains a single instruc-
tion at Line 15 because it does not have data-dependences
with others, which results in missing the field access at
Line 14 ([rsp+68]).

Therefore, in order to produce a sound data-flow recovery
result, Plankton further calculates a may scope for stack
slots in S (Line 19 - Line 30).
The may scope is calculated by an augmented liveness

analysis that considers possible stack slot overlapping during
forward and backward data-flow analysis. Traditional live-
ness analysis [69] only performs backward analysis, which
propagates the use site information to previous instructions.
However, there may not be explicit uses after live sites of a
stack slot. For example, the field access at Line 14 in Figure 2b
could be placed before or after Line 15.
Five sets are maintained for each instruction: OUT , IN ,

USE, KILL, and OVER. Initially, OUT and IN are empty.
USE contains stack slots that must live at current instruc-
tion, which comes from the result of previous must scope
inference (Line 22). The OVER and KILL sets are used to
minimize possible precision loss (merging unrelated stack
slots) introduced by the may analysis. The idea here is to
leverage stack slots that have contradicted visibility to filter
out inaccurate may scope results, which is defined below:

Definition 3.2. (Visibility Contradiction). Stack slots x1 and
x2 have visibility contradiction if they interfere in the memory
and are independent variables in the debug information.

In other words, two variables with disjoint scopes in the
source code could occupy the same memory location and
cannot be visible simultaneously in the binary code.
The KILL set of one instruction contains stack slots that

must not be visible given the ones inUSE. The OVER set is
used at some merge points in the control-flow graph. When
multiple sets are merged into a single one, we check if there
exist stack slots that cannot be visible at the same time. If so,
we will abandon both of them.

Example 3.8. Stack slots corresponding to log and msg
in Figure 2b must not be visible together because they are

independent variables and occupy the samememory location
[rsp+64]. Therefore, the KILL set at Line 15 in Figure 2b
contains msg, which prevents the may scope of msg from
including log’s scope. Similarly, the OVER set after Line 23
contains both log and msg, which rules out the false scope
starting from Line 23 for both variables.

Similar to traditional data-flow analysis, we define transfer
functions for backward and forward data-flow propagation
as illustrated in Line 25 to Line 26 and Line 29 to Line 30,
respectively. In Algorithm 1, two worklist-based processes
iteratively apply transfer functions on instructions along the
control-flows. The algorithm keeps updating these sets until
it sees the fixed point (Line 19 - Line 30). The IN set of each
instruction is taken as the set of may live slots.

Example 3.9. In Figure 2b, after the must scope inference,
the stack slot [rsp+64] represents the log at Line 15 while
referring to the msg at Line 21. The stack slot [rsp+68] at
Line 14 does not map to any variables. Figure 5 illustrates the
may scope inference process for log and msg. Two different
kinds of lines represent their must live sites after the must
scope inference. The colored areas represent the extended
live ranges obtained by the may scope inference. Initially,
the USE sets of Line 15 and Line 21 contain log and msg,
respectively (Figure 5a). Figure 5b shows that the forward
analysis only propagates the USE sets to program points
after the must live sites. The propagation stops at the be-
ginning of B3 since the two variables overlap and cannot be
visible simultaneously in B3. Therefore, their may scopes are
extended to program points before B3 and after must live
sites. Similarly, Figure 5c shows that the backward analysis
extends their may scopes before must live sites and after B0.
After the backword and forward analysis, only B1 and B2 are
marked as the may scopes for log and msg, respectively.

3.2.1 Applying Scopes. Finally, Plankton transforms the
function according to inferred scopes. The must scope is first
used for reconstructing the mapping by finding if specific ref-
erences belong to any scopes of source-level variables. Then,
Plankton further leverages the may scope information to
obtain a sound translation result bymerging unmapped stack
slots to the mapped ones. Since the may scope is an over-
approximation, we could wrongly merge independent stack
slots into one variable entity. We found that the may scope
can benefit static analysis according to the evaluation in
§ 5.4.2, meaning that although the may analysis cannot en-
tirely avoid precision loss, it brings more true positive results
than false positives. It is because a precise static analysis is
able to eliminate the effect of fake dependences by combining
different levels of sensitivity [71].

4 Type Enforcement
In this section, we introduce the type enforcement algorithm.
The initial LLVM IR is first annotated with various type

8

Promotion Rules

v = ptrtoint τ ∗ vp to isz
(isAgg(τ) ∧ (vk = v ∨ vj = v)) ⇒ Jvi = add isz vj, vk Kn

v ′ = getelementptr τ ∗ vp, i32 Jvidx Km
v = ptrtoint typeOf(v ′) v ′ to isz

(multiAdd)

Demotion Rules

∃k, vk = inttoptr isz vp to τ ∗; v = phi τ ∗ J[vi, bi]Kn
Jv ′i = typeConv(vi , isz)Kn
vt = phi isz J[v ′i, bi]Kn
v = inttoptr isz vt to τ ∗

(intPhi)

Figure 6. Example promotion and demotion rules.

information obtained from the debug information including
variables, function parameters, etc.

Then, Plankton iteratively applies both LLVM native op-
timizations (e.g., InstCombine) and a set of custom peephole
transformation rules to the initial IR. We instantiate a type
lattice to organize all LLVM types. The top (⊤) of the lat-
tice is the least precise type, representing the any type. The
bottom (⊥) of the type lattice is the most precise type. For
example, all values in the assembly code initially have the
integer type, which is the most imprecise one, and a more
precise one could be a pointer type. In the initial program,
apart from values without type annotation whose types are
under-precise, some value types can also be over-precise.
For example, inlined functions could be optimized to use the
pointee value directly, however, the debug informationmight
still mark the variable as the original pointer type, which
makes the variable’s type “more precise” than its actual type.

4.1 Transformation Rules
To tackle the above problems, we propose two kinds of trans-
formations to minimize type conversions: promotion and
demotion. Promotion moves down the type lattice, finding
increasingly precise types for values, while demotion moves
up the type lattice to find decreasingly less precise types.
They also have an inverse correlation in that one can always
undo the effect of the other. Apart from assigning correct
types to values, those rules also propagate type hints forward
through the control- and data-flows because type conver-
sions are passed on to all use sites of the values.

Figure 6 shows two example transformation rules 1. Each
rule has two parts and are split by a single line, where the
upper part represents the code pattern we are trying to catch,
and the lower part is the semantically equivalent transfor-
mation result. The bold font represents LLVM instructions.
typeof(v) returns the type of value v . typeConv(v , τ) in-
serts type conversions to convert v to type τ . replaceUse(v1,
v2) will replace all uses of v1 in the LLVM module with

1Due to page limitation, a formal description of the syntax and more rules
can be found in the supplement material

v2. isAgg(τ) returns true if τ is an aggregate type. typeOf-
Pointee(v) returns the pointee type of the pointer valuev . No-
tation JopiKn means repeatopi forn times likeop0,op1, ...,opn .
We also define a partial order for each pair of types, denoted
as τ1 > τ2, which means τ1 is more precise than τ2 on the
type lattice.

multiAdd is a general transformation rule for convert-
ing pointer arithmetic with incorrect types into the correct
ones [58]. Given a ptrtoint instruction and a sequence of
add instructions, Plankton transforms them into a getele-
mentptr instruction by finding proper indices into sub-
elements of aggregate types. Operands used in each add
instruction could be either immediate value or variable. The
immediate offset can index types with variable-length sub-
elements (e.g., structure), while variable offset can only be
used in types with fixed-length sub-elements (e.g., array).
The demotion rules are just a set of “inverse” rules for the
promotion. intPhi demotes the pointer type used in the phi
instruction to the integer type by adding type conversions.

4.2 Fixed point Algorithm
As illustrated in Figure 7a, Plankton applies both LLVM
native optimizations and peephole transformation rules to
the IR. Statei represents the number of type conversions.
Promotion and demotion are performed back-and-forth, and
reach their only fixed points (the number of conversions
does not change) in each iteration. The algorithm also finds
a global fixed point between promotion and demotion. Since
LLVM native optimizations are not guaranteed to reach a
fixed point, our algorithm only iterates between optimiza-
tions and peephole transformations for a fixed number of
times (3 in our implementation to balance the effectiveness
and efficiency).
Termination of the algorithm. Both promotion and de-
motion are guaranteed to terminate at Statei because any
of them alone is monotonic according to the type lattice,
and the number of type conversions bounds the search. All
state transitions are organized into a graph, and Plankton
decides whether a global fixed point is reached by detect-
ing cycles on-the-fly. The fixed point could contain multiple
states because conflict types might exist for the same value.
A typical example is the usage of union type inside the code,
which can be cast to different types according to the con-
text. As shown in Figure 7a, the global fixed point can have
2 (Statep equals to Staten), 4, or 2n states. Plankton will
choose the state with the fewest type conversions as the
final state. Therefore, the global fixed point could be dy-
namic and guaranteed to be reached since the number of
type conversions is bounded.

Example 4.1. Figure 7b shows the LLVM IR after promo-
tion. Since it still contains a ptrtoint, Plankton performs
another round of demotion, resulting the IR in Figure 7c. It
can be seen that the states of Figure 7b and Figure 7c form a

9

Promotion

!"#"$! !"#"$"

Demotion

!"#"$# !"#"$$

!"#"$%!"#"$&

LLVM Native
Optimizations

(a) Overview

1 B0:

2 %5 = getelementptr i64* %4, 1

3 B1:

4 %20 = getelementptr i64* %15, 2

5 B2:

6 %60 = phi i64* [%5, %B0], [%20,

%B1]

7 %61 = ptrtoint i64* %60 to i64

8 sub i64 %61, i64 %54

9

(b) LLVM IR After promotion.

B0:

%5 = getelementptr i64* %4, 1

%7 = ptrtoint i64* %5 to i64

B1:

%20 = getelementptr i64* %15, 2

%21 = ptrtoint i65* %20 to i64

B2:

%60 = phi i64 [%7, %b_0], [%21,

%b_2]

sub i64 %60, i64 %54

(c) LLVM IR after demotion.

Figure 7. An illustration of back-and-forth transformations. Some instructions are omitted for simplicity.

cycle in the graph. Therefore, Plankton identifies them as
a global fixed point that involves 2 states and takes Figure 7b
as the final result since it contains fewer conversions.

5 Evaluation
In this section, we aim to systematically evaluate the ef-
fectiveness (§ 5.1) and efficiency (§ 5.3) of Plankton on
large-scale benchmarks. Additionally, we conduct ablation
studies to illustrate the importance of Plankton’s key com-
ponents (§ 5.4).

Environment. All experiments are performed on an Intel
Xeon(R) computer with an E5-1620 v3 CPU and 500GB of
memory running Ubuntu 16.04 LTS.

Static Analysis. We adopt two state-of-the-art LLVM-
based static analysis tools Pinpoint [83] and SVF [84] in the
evaluation. They perform sparse value-flow analysis to check
the source-sink properties of the program. We use them to
detect five common CWE bugs: null pointer deference (NPD),
use-after-free (UAF), double-free, file descriptor leak, and
memory leak. In our evaluation, all static analysis timeout is
set to 24 hours with a memory limit of 500GB.

Metrics. Since our goal is not to evaluate the ability of
static analysis tools, we do not directly measure the precision
and recall of analysis results. Instead, we take analysis results
on the compiled IR as the ground truth and compare them
with that on the lifted IR. Two reports are considered the
same if they share the same source and sink locations. True
positives (TPs) denotes vulnerabilities detected in both the
compiled IR and the lifted IR. False positives (FPs) are bugs
that are only discovered in the lifted IR. False negative (FN)
represents defects that are only found in the compiled IR.

Benchmarks. As shown in Table 1, we adopt both stan-
dard benchmarks and real-world programs in the evaluation.
The standard benchmarks include Juliet Test Suite [87]. In
terms of real-world programs, we choose 17 open-source
C/C++ projects such as PHP. In total, we use 18 projects in
the evaluation. We use wllvm [20] (a wrapper for Clang) to
produce LLVM IRs required by static analysis tools. We build
all binaries with two mainstream system compilers Clang

and GCC using project default configurations. Among the
adopted 18 projects, 14 of them by default are built with de-
bug information, the remaining 4 programs provide options
to enable debug build. Additionally, all binaries by default
are built with different levels of compiler optimizations deter-
mined by project default configurations, including -O0, -O3,
-Ofast, etc. In total, we have 48 binaries in the evaluation.

5.1 Comparison with Existing Lifters
In this section, we compare Plankton with five existing bi-
nary lifters:RetDec [11],Reopt [8],McSema [5], revng [42],
and mctoll [9]. Table 1 shows the bug detection results us-
ing SVF and Pinpoint on LLVM IRs produced by wllvm,
Plankton and compared binary lifters. Since Pinpoint re-
quires the LLVM IR to be 3.6.2 version, which is not sup-
ported by the compared lifters, we only adopt SVF in the
baseline comparison. Only McSema and Plankton success-
fully lift all binaries (McSema leverages IDA Pro as its front-
end). RetDec, Reopt, and revng fail to process 1, 3, and 20
binaries respectively. mctoll fails on all binaries because of
multiple internal crashes and difficulties in handling external
functions [7, 10].
For Pinpoint, Plankton achieves a false positive rate

of 20.7% and a false negative rate of 20.9%. For SVF, the
false positive and negative rates achieved by Plankton are
13.7% and 22.1%. Compared with RetDec, McSema, Reopt,
and revng, Plankton reduces the false positive/negative
rates of SVF by 48.6%/38.5%, 86.3%/77.9%, 86.3%/77.9%,
and 86.3%/77.9% respectively.
RetDec [11] directly applies debug information without

further refinement. Besides, it does not reconstruct com-
plex aggregate types from the debug information. Therefore,
SVF can only detect bugs that involve simple data-flows in
IRs produced by RetDec. The above limitations explain its
poor performance compared with Plankton. Reopt does
not output any meaningful static analysis results. The main
reason is that Reopt only uses the function boundary in
the debug information to assist binary lifting and overlooks
others, making the results quite inaccurate. Both McSema

10

Table 1. Bug detection results for IR produced by wllvm and lifted from Clang compiled binaries by different binary lifters,
all results are organized binary-wise. ▼ means the static analysis runs out of memory. ▲ means lifting failure. Only SVF is
used for compared lifters since they cannot produce the 3.6.2 version LLVM IR Pinpoint requires. Only the client sides of
MySQL and MariaDB are invoked since both SVF and Pinpoint timeout on their server sides.

Program
wllvm Plankton RetDec McSema Reopt revng mctoll

Pinpoint SVF Pinpoint SVF SVF SVF SVF SVF SVF
#Report #Report #FP #FN #TP #FP #FN #TP #FP #FN #TP #FP #FN #TP #FP #FN #TP #FP #FN #TP -

cwe401-1 321 764 83 8 313 55 117 647 192 131 633 0 764 0 0 764 0

▲

▲

cwe401-2 387 0 77 32 355 0 0 0 0 0 0 0 0 0 0 0 0
cwe401-3 193 450 53 6 187 36 78 372 120 84 366 0 450 0 0 450 0
cwe415-1 446 361 28 120 326 15 191 170 126 132 229 0 361 0 0 361 0
cwe415-2 302 0 32 84 218 0 0 0 0 0 0 0 0 0 0 0 0
cwe416 884 236 60 1 883 0 0 236 49 35 201 0 236 0 0 236 0
cwe476 280 51 7 150 130 0 0 51 2 4 47 0 51 0 0 51 0
bash 3 31 0 2 1 21 8 23 135 11 20 0 31 0 0 31 0

darknet 21 666 16 6 15 66 57 609 128 163 503 0 666 0 0 666 0 5 666 0
ffmpeg 196 ▼ 204 55 141 ▼ ▼ ▼

▲
▲

git 68 612 24 21 47 136 82 530 879 338 274 0 612 0
libcrypto.so 114 647 19 42 72 186 25 622 1009 418 229 0 647 0 0 647 0
libicuuc.so 97 257 63 34 63 35 72 185 179 222 35 0 257 0 0 257 0
libuv.so 0 7 2 0 0 0 0 7 1 6 1 0 7 0 0 7 0 5 7 0
mariadb 39 86 2 7 32 13 11 75 105 66 20 0 86 0 0 86 0

▲
mysql 64 111 4 39 25 17 15 96 0 111 0 0 111 0 0 111 0
php 189 2160 101 66 123 156 781 1379 ▲ 0 2160 0 ▲

python 31 719 18 12 19 125 145 574 171 717 2 0 719 0 0 719 0
redis-server 871 911 93 238 633 102 331 580 71 881 30 0 911 0 0 911 0
ss-local 1 22 10 0 1 2 6 16 16 16 6 0 22 0 0 22 0 5 22 0
tmux 49 292 15 2 47 26 48 244 153 256 36 0 292 0 0 292 0 5 292 0
vim 103 536 8 40 63 118 76 460 1335 301 235 ▼ 0 536 0

▲wget 42 53 16 4 38 29 5 48 66 42 11 0 53 0 0 53 0
wrk 56 516 49 28 28 35 53 463 33 511 5 ▼ 0 516 0
Total 4757 9488 984 997 3760 1173 2101 7387 4770 4445 2883 0 8436 0 0 6716 0 20 987 0 0
Rate - .207 .209 .790 .137 .221 .779 .623 .607 .393 1.0 1.0 .000 1.0 1.0 .000 1.0 1.0 .000 -

and revng produce emulation-style LLVM IRs, which lack
too much high-level information and are incompatible with
source-level static analysis tools like SVF [63]. Therefore,
they do not produce any true positives.

5.1.1 False Cases Analysis. We manually inspect both
false positives and negatives in the bug reports and sum-
marize several common reasons. The first one, which is
also the prominent problem, is that although static anal-
ysis tools are designed to be “deterministic”, which means
they are expected to produce the same results for the same
LLVM IR, they still cannot guarantee consistent outputs
for two semantically equivalent but syntactically different
IRs [77] (e.g., differently optimized IRs) because of the un-
soundness of actual implementations. Our experiments in
§ 5.4.2 also support this claim. Second, optimizations adopted
by Plankton could merge or delete call sites, causing differ-
ent source-sink locations. For example, we found that all false
negatives in CWE415 are caused by optimized away memory
allocations and deallocations. Third, despite effort spent im-
plementing Plankton, some reverse engineering problems
still exist that are not appropriately handled. For example,
Plankton currently cannot accurately parse virtual tables
in C++ classes, causing false cases in C++ code.

The public availability of SVF allows us to dig deeper into
the root cause. We found most false cases are caused by
an assumption made by SVF: the IR is unoptimized, which

does not hold in IR produced by Plankton. Optimizations
could transform typed pointer arithmetic (getelementptr)
to arithmetic with void pointer and pointer cast (bitcast),
which means getelementptr does not preserve structure or
array information anymore. Although such transformations
are valid for code generation, they are currently not handled
by SVF’s analysis rules, causing different pointer analysis
and bug detection results. For example, SVF fails to resolve
dozens of memory allocation function pointers in optimized
code produced by Plankton, which accounts for almost
all false negatives. Another major problem is the handling
of path conditions. SVF collects path conditions during the
source-sink analysis and queries a solver for satisfiability.
However, we found that different path conditions collected
from syntactically different IRs could cause the solver to
produce contrary satisfiability results.

5.2 Generalization to Other Compilers
We also compare the results of checking IRs lifted from
GCC compiled binaries and compiled IRs 2. For Pinpoint,
Plankton achieves a false positive rate of 23.8% and a false
negative rate of 25.7%. For SVF, the false positive and nega-
tive rates achieved by Plankton are 24.9% and 25.8%. The
results are a little bit worse than that of Clang compiled

2Due to page limitation, detailed data can be found in the supplement
material

11

y = 0.727x + 0.0869
R² = 0.9976

y = 1.3586x - 0.0141
R² = 0.9982

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0
20.0
22.0
24.0
26.0
28.0
30.0
32.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ti
m

e (
m

in
)/

 M
em

or
y

(G
)

Code Size (MB)

Time
Memory

Figure 8. Linear fit lines on the runtime data. The x-axis
stands for the size of the code (MB). The y-axis stands for
the time cost (minute) or the memory cost (GB).

37.19s
(34.76%)

13.83s
(12.92%)

1.8s
(1.68%)

54.17s
(50.63%)

13.83s
(12.92%)

1.8s
(1.68%)

54.17s
(50.63%)

37.19s
(34.76%)

Stack Disambiguation Peephole LLVM Opt Others

Figure 9. Average execution time breakdown of Plankton.
Both the data in seconds and the percentage are shown.

binaries. We found that the main reason for the worse per-
formance is inherent differences between compilers, such
as inline decisions and optimizations, which could amplify
the effect of the unsound static analysis implementations (as
shown in § 5.1.1). For example, we found that the GCC com-
piled python does not merge return instructions like Clang;
by adding an extra transformation that unifies returns, we
eliminated 216 false positives. Most false negatives in redis
are caused by different inline functions. By disabling inlining
during compilation, its false negative rate drops from 75.4%
to 15%. Therefore, we use Clang in the baseline compari-
son to eliminate the influence of compiler differences and
better demonstrate the accuracy of our method. The results
also indicate that Pinpoint is less influenced by syntactic
differences compared with SVF, with only a 3.9% false rate
increase on average compared with 7.4%.

5.3 Scalability
We adopt the curve fitting approach [81] to study the ob-
served time- and memory-complexity of Plankton. Figure 8
shows the fitting curves and their coefficients of determi-
nation R2. R2 ∈ [0, 1] is a statistical measure of how close
the data are to the fitting curve. The closer R2 is to 1, the
better the fitting curve is. It shows that Plankton’s time
and memory cost grows almost linearly in practice (R2 >
0.99), thus scaling up quite gracefully. For example, the code
size of FFmpeg is 6.1× bigger than that of git. Therefore,

234.45
235.53
249.91

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00

IR Statement # Inttoptr # Ptrtoint # Bitcast

N
or

m
al

iz
ed

C
ou

nt

Wllvm
OptWllvm
Plankton
NoDebug
NoOpt
NoPeep
NoStack

Figure 10. Comparison of instruction count and number of
type conversions. All results are normalized against wllvm.
Three columns of data that are too large to show are marked
with their actual number.

Plankton takes 6.1× more time and consumes 6.4× more
memory. For projects with a code size of less than 2MB, the
lifting time is less than 2 minutes, and memory consumption
is less than 3GB. For the biggest project FFmpeg, Plankton
spends 16.5 minutes and consumes 30.9GB of memory. On
average, Plankton spends 103 seconds on one binary with
3GB memory consumed, showing good scalability.
Figure 9 presents the time cost breakdown of Plankton.

The majority of its time is spent on LLVM native optimiza-
tions (50.63%). Plankton applies all O3-level optimizations
supported by LLVM to the IR in serial, but this process can
be easily parallelized since they are only performed intra-
procedurally. Both stack disambiguation and our custom
peephole transformations are very efficient, counting for
only 14.58% of all the lifting time. Other lifting stages, such
as control-flow recovery and function prototype recovery,
account for 34.8% of the time, which on average takes 36.03s.

We also compare the memory consumption of Plankton
with that of RetDec. We omit the comparison with other
lifters because they either fail on too many binaries (e.g.,
mctoll) or depend on results of other tools (e.g., McSema
uses IDA Pro during its lifting process). For projects that
can be handled by RetDec, Plankton reduces about 11%
memory consumption, showing that the two new algorithms
do not cause additional memory overhead.

5.4 Ablation Study
In this section, we conduct ablation studies to understand the
importance of key components in Plankton. Specifically,
we consider the following four ablations:
• NoDebug performs binary lifting without using the
debug information.
• NoStack does not do stack disambiguation.
• NoOpt does not perform LLVM native optimizations
during the type enforcement.

12

984

3760

997
475

3618

1139

84

336
3656

504

1647

1889

23304757

1101

3110

2427

PINPOINT

1173

7387

2101

7540

1179

1948

10331

3398

4978

3027

3197

2640

6090 6461

6848

SVF

WLLVM PLANKTON OPTWLLVM NODEBUG NOOPT

7709
1290

NOPEEPNOSTACK

WLLVM

WLLVM

WLLVM

WLLVM

WLLVM

WLLVM

PLANKTON OPTWLLVM

NODEBUG

NOSTACK

NOOPT NOPEEP

WLLVM

WLLVM

WLLVM

WLLVM

WLLVM

WLLVM

PLANKTON OPTWLLVM

NODEBUG

NOSTACK

NOOPT

NOPEEP

2322

Figure 11. Venn diagrams of the number of bugs detected by Pinpoint and SVF on OptWllvm, Plankton and its ablations.
All results are compared with the default compiled IR (wllvm).

• NoPeep does not use peephole transformation rules
during the type enforcement.

We also include IRs obtained by re-optimizing IRs pro-
duced by wllvm using the LLVM offline re-optimizer [58],
denoted as OptWllvm.

5.4.1 IR Quality. We first measure the quality of lifted
IRs by two metrics defined by existing work [80]: the size of
the IR code and the number of type conversions. Figure 10
presents the results on all benchmarks that are normalized
against wllvm.
NoOpt produces the largest IR code without further code

optimization (on average 10.5× bigger than others). All abla-
tions and OptWllvm generate smaller IRs compared with
wllvm, indicating the effectiveness of code optimizations in
reducing code size. Smaller code could also accelerate static
analysis. According to our evaluation, analyzing Plankton’
IR runs 1.3× faster than analyzing wllvm’s IR.

Plankton produces fewer type conversions between inte-
gers and pointers (ptrtoint and inttoptr) than all other ab-
lations. On average, Plankton reduces 90.9%, 55.1%, 95.6%,
and 19.2% conversions compared with NoDebug, NoOpt,
NoPeep, and NoStack respectively. Without debug infor-
mation, data-flows and type information cannot be soundly
recovered, severely restricting the type correctness level.
The results of NoPeep and NoOpt illustrate the importance
of combining both LLVM native optimizations and custom
transformation rules, bringing IRs with higher quality than

either. We also found that compared with only applying pro-
motion rules, combining promotion and demotion produces
31.4% fewer type conversions in the lifted IR. On average,
Plankton produces 75.6% fewer bitcast instructions than
NoStack. Such results indicate the effectiveness of the stack
disambiguation algorithm in avoiding overlapping stack slot
usage, which will otherwise result in heavy use of casting be-
tween different variables. Plankton produces more casting
instructions between pointers (bitcast) than NoDebug and
NoPeep. It is because both of them heavily use ptrtoint and
inttoptr to implement pointer arithmetic, preventing them
from casting values to correct types. They even have fewer
bitcast instructions than wllvm and OptWllvm. On aver-
age, only 81% of stack references are mapped to source-level
variables by the debug information. However, this percent-
age can be as low as 35% in some projects (e.g., Python)
due to compiler optimizations, and the stack disambiguation
algorithm can compensate for the remaining ones.
The compiler-generated IR is also not free of type con-

versions, wllvm produces 29,398 ptrtoint instructions and
3,951 inttoptr instructions in all IRs. Plankton has fewer
ptrtoint and bitcast instructions comparedwithwllvm, but
has more inttoptr instructions, it is because some assembly
instructions and external library functions are not currently
handled by Plankton, making it unable to transform the IR
properly. For example, tmux project depends on libevent
APIs, but debug information of dynamically linked libraries

13

is not present in the compiled binary. Similar issues also exist
in php, which links libxml dynamically. This problem could
be easily fixed by analyzing debug information of external
libraries during binary lifting, and we leave it as future work.

5.4.2 Static Analysis Precision. Figure 11 shows the bug
detection results of Plankton, OptWllvm, and all ablations.
Plankton outperforms all ablations with more true posi-
tives (on average 208% more), lower false positive rates (on
average 34.6% lower), and lower false negative rates (on av-
erage 42.8% lower). NoDebug has the worst performance
compared with all the other ablations. Without debug infor-
mation, NoDebug cannot accurately recover control- and
data-flows. Moreover, the incompleteness of the debug in-
formation is also not appropriately handled, making it hard
for static analyzers to find buggy paths. Without a higher
level of type correctness, both NoOpt and NoPeep hinder
static analysis capabilities. Therefore, even with high-quality
control- and data-flow recovery, NoOpt and NoPeep still
perform worse than Plankton.
NoStack performs better than other ablations but still

worse than Plankton since variable information is still not
fully recovered. Specifically, there are 3,983,477 stack refer-
ences in all binaries, and 20,9172 of them benefit from the
stack disambiguation algorithm. Only 81% of stack references
are mapped to source-level variables by the debug informa-
tion on average. However, this percentage can be as low as
35% in some projects (e.g., Python) due to compilation.

We also measure the influence of the may scope inference
on the overall results by disabling it in the stack disambigua-
tion algorithm.Without the may scope, static analysis results
on SVF generates 11% more false positives, 1.2% more false
negatives, and 10.9% fewer true positives, indicating that it
has more positive effects on the lifting than negative ones.
Similarly, for Pinpoint, disabling the may scope results in
3% and 1% more false positives and negatives, respectively,
and 3.1% fewer true positives. The influence is subtle be-
cause only a small portion of stack slots needs may scope
information, accounting for only 9.3% of all mapped ones.
Both wllvm and OptWllvm use IRs compiled from the

source code to check for bugs. The only difference is that
OptWllvm additionally re-optimizes all IRs using O3-level
optimizations. Plankton and OptWllvm produce similar
number of true positives (11147 vs. 11158). The overall false
positive rate of OptWllvm is even slightly higher than that
of Plankton (20% vs. 16.2%), while they have comparable
false negative rates (21.6% vs. 21.7%). The above result indi-
cates that static analyzers could still produce diverse results
on semantically equivalent but syntactically different IRs.
Therefore, the difference between Plankton and wllvm is
reasonable and inevitable, showing that Plankton is effec-
tive enough for real-world usage.

6 Discussion
Cross-compilation. Plankton also supports other archi-
tectures (e.g., Arm). In the experiments, we only evaluate with
X86_64 due to its popularity, and all baselines support it.
Producing other IR forms. Currently, Plankton only pro-
duces different versions of LLVM IRs. This is because LLVM
IR is more suitable for static analysis, and many static anal-
ysis tools are already built up on it. Although Plankton
cannot directly produce other forms of IRs such as Gim-
ple [38], the underlying algorithms are general so that one
can write a Gimple lifter based on them.
Other downstream applications. Since Plankton is able
to produce close-to-source LLVM IRs, it can support other ap-
plications that are based on LLVM apart from static analysis,
including binary composition analysis [64], post-link opti-
mization [72], and code embeddings [88]. Some of them, such
as post-link optimization, require the LLVM IR to be recom-
pilable. Although the LLVM IR is recompilable by design, the
current Plankton can not guarantee the 100% success of re-
compilation because not all assembly instructions have their
LLVM IR counterparts (some instructions are system specific)
and not all library functions are correctly modeled (§ 5.4.1).
Therefore, extra efforts are needed for Plankton to support
other applications. We leave it as part of our future work.

7 Related Work
Binary Lifting. Many lifters have been proposed to pro-
duce LLVM IRs from binaries. SecondWrite [26, 27, 47] uses
VSA-based approaches to recover variables and data types
from stripped binaries. They do not consider possible vari-
able overlaps and only infer types for top-level variables.
BinRec [25] lifts binaries based on dynamic disassembly.
Lasagne [80] statically translates X86_64 binaries to LLVM IR
and then compiles it to Arm while enforcing the x86 memory
ordering model. revng [41, 42] relies on QEMU to perform
lifting. LISC [51] automatically learns translation rules from
assembly to IR. Inception [40] merges LLVM IRs produced
from binaries and source code. mctoll [9] and RetDec [11]
also adopt code transformations to refine the produced LLVM
IR. However, the peephole transformations adopted by mc-
toll only consider single operations against integer-typed
pointees and LLVM optimizations is only used for reducing
the code size. Also, all transformations are only run once
without guidance, severely limiting their effectiveness.
Metadata-assisted BinaryAnalysis. Many existingworks
have adopted metadata emitted by the compiler to facilitate
analysis tasks that require high-quality binary translation
results. Egalito [93] and RetroWrite [44] use additional meta-
data embedded in position-independent code (PIC) to per-
form accurate binary rewriting. PEBIL [59] and Vulcan [46]
require symbol information to perform static binary instru-
mentation. Zeng et al. [95], Shuffler [92], MCFI [70], Self-
rando [39] and, CCR [57] all make use of compiler-generated

14

information to enforce control-flow intergrity (CFI). HPC-
Toolkit [86] proposed to use the debug information to un-
derstand the performance of fully optimized modular code.
Park et al. [75] leverage JNI-interoperation-related types to
improve binary decompilation and static analysis. However,
they only handle and propagate function signature types.
Unlike them, in Plankton, we are the first to use the debug
information to facilitate static code analysis.

8 Conclusion
In this paper, we propose a new binary lifter Plankton to-
gether with two new algorithms that can fill the gap between
the low- and high-level code to support full-fledged static
analysis. Experimental results show that Plankton has suf-
ficient precision and scalability for real-world bug detection.

Acknowledgments
We thank the anonymous reviewers for their valuable com-
ments and opinions for improving this work. This work is
supported by the ITS/440/18FP grant from the Hong Kong
Innovation and Technology Commission and research grants
from Huawei, Microsoft, and TCL. Heqing Huang is the cor-
responding author.

References
[1] Ida pro. https://www.hex-rays.com/ida-pro/, 2003.
[2] Wllvm fails. https://github.com/SRI-CSL/gllvm/issues/47, 2015.
[3] Coverity scan. https://scan.coverity.com/projects/, 2018.
[4] Coverity scan fails. https://stackoverflow.com/questions/50434236/

coverity-scan-fails-to-build-stdlib-h-with-gnu-source-defined/, 2018.
[5] Mcsema. https://github.com/lifting-bits/mcsema/, 2018.
[6] Coverity scan fails. https://github.com/civetweb/civetweb/issues/769,

2019.
[7] mctoll issue. https://github.com/microsoft/llvm-mctoll/issues/55, 2019.
[8] Galois inc. reopt. https://github.com/GaloisInc/reopt/, 2020.
[9] Llvm-mctoll. https://github.com/Microsoft/llvm-mctoll/, 2020.
[10] mctoll issue. https://github.com/microsoft/llvm-mctoll/issues/72, 2020.
[11] Retdec. https://github.com/avast/retdec/, 2020.
[12] Wllvm fails. https://github.com/SRI-CSL/gllvm/issues/39, 2020.
[13] Cppcheck. https://cppcheck.sourceforge.io/, 2021.
[14] Debugging a crashed application. https://access.redhat.com/

documentation/en-us/red_hat_enterprise_linux/7/html/developer_
guide/debugging-crashed-application/, 2021.

[15] Ghidra. https://github.com/NationalSecurityAgency/ghidra/, 2021.
[16] Infer. https://github.com/facebook/infer/, 2021.
[17] Intel® vtune™ profiler user guide. https://www.intel.com/content/

www/us/en/develop/documentation/vtune-help/top/set-up-
analysis-target/linux-targets/debug-info-for-linux-binaries.html,
2021.

[18] Linux debug symbol packages. https://wiki.ubuntu.com/
DebugSymbolPackages/, 2021.

[19] Llvm lifetime intrinsic. https://llvm.org/docs/LangRef.html#llvm-
lifetime-start-intrinsic, 2021.

[20] Wllvm: whole program llvm. https://github.com/travitch/whole-
program-llvm/, 2021.

[21] Debugging tools for windows. https://docs.microsoft.com/en-us/
windows-hardware/drivers/debugger/, 2022.

[22] Windows debug symbols. https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/public-and-private-symbols/, 2022.

[23] Build systems for c++. https://hackingcpp.com/cpp/tools/build_
systems.html, 2023.

[24] C++ compilers. https://en.wikipedia.org/wiki/List_of_compilers#C+
+_compilers, 2023.

[25] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin
Zhou, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cris-
tiano Giuffrida, et al. Binrec: dynamic binary lifting and recompilation.
In Proceedings of the Fifteenth European Conference on Computer Sys-
tems, pages 1–16, 2020.

[26] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim
Gruen, Nathan Giles, and Rajeev Barua. A compiler-level intermediate
representation based binary analysis and rewriting system. In Proceed-
ings of the 8th ACM European Conference on Computer Systems, pages
295–308, 2013.

[27] Kapil Anand, Matthew Smithson, Aparna Kotha, Khaled Elwazeer, and
Rajeev Barua. Decompilation to compiler high ir in a binary rewriter.
University of Maryland, Tech. Rep, 2010.

[28] Cristian Assaiante, Daniele Cono D’Elia, Giuseppe Antonio Di Luna,
and Leonardo Querzoni. Where did my variable go? poking holes
in incomplete debug information. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, pages 935–947, 2023.

[29] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses
in x86 executables. In International conference on compiler construction,
pages 5–23. Springer, 2004.

[30] Gogul Balakrishnan and Thomas Reps. Divine: Discovering variables
in executables. In International Workshop on Verification, Model Check-
ing, and Abstract Interpretation, pages 1–28. Springer, 2007.

[31] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth
Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson
Engler. A few billion lines of code later: using static analysis to find
bugs in the real world. Communications of the ACM, 53(2):66–75, 2010.

[32] Zoran Budimlic, Keith D Cooper, Timothy J Harvey, Ken Kennedy,
Timothy S Oberg, and Steven W Reeves. Fast copy coalescing and
live-range identification. ACM SIGPLAN Notices, 37(5):25–32, 2002.

[33] Yuandao Cai, Yibo Jin, and Charles Zhang. Unleashing the power of
type-based call graph construction by using regional pointer infor-
mation. In 33nd USENIX Security Symposium (USENIX Security 24),
2024.

[34] Yuandao Cai, Peisen Yao, Chengfeng Ye, and Charles Zhang. Place
your locks well: understanding and detecting lock misuse bugs. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 3727–3744,
2023.

[35] Yuandao Cai, Peisen Yao, and Charles Zhang. Canary: practical static
detection of inter-thread value-flow bugs. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, pages 1126–1140, 2021.

[36] Yuandao Cai, Chengfeng Ye, Qingkai Shi, and Charles Zhang. Pea-
hen: Fast and precise static deadlock detection via context reduction.
In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
pages 784–796, 2022.

[37] Yuandao Cai and Charles Zhang. A cocktail approach to practical
call graph construction. Proceedings of the ACM on Programming
Languages, 7(OOPSLA2):1001–1033, 2023.

[38] Sean Callanan, Daniel J Dean, and Erez Zadok. Extending gcc with
modular gimple optimizations. In Proceedings of the 2007 GCC Devel-
opers’ Summit, pages 31–37. Citeseer, 2007.

[39] Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu,
Georg Koppen, Per Larsen, Christopher Liebchen, Mike Perry, and
Ahmad-Reza Sadeghi. Selfrando: Securing the tor browser against
de-anonymization exploits. Proc. Priv. Enhancing Technol., 2016(4):454–
469, 2016.

15

https://www.hex-rays.com/ida-pro/
https://github.com/SRI-CSL/gllvm/issues/47
https://scan.coverity.com/projects/
https://stackoverflow.com/questions/50434236/coverity-scan-fails-to-build-stdlib-h-with-gnu-source-defined/
https://stackoverflow.com/questions/50434236/coverity-scan-fails-to-build-stdlib-h-with-gnu-source-defined/
https://github.com/lifting-bits/mcsema/
https://github.com/civetweb/civetweb/issues/769
https://github.com/microsoft/llvm-mctoll/issues/55
https://github.com/GaloisInc/reopt/
https://github.com/Microsoft/llvm-mctoll/
https://github.com/microsoft/llvm-mctoll/issues/72
https://github.com/avast/retdec/
https://github.com/SRI-CSL/gllvm/issues/39
https://cppcheck.sourceforge.io/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/debugging-crashed-application/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/debugging-crashed-application/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/debugging-crashed-application/
https://github.com/NationalSecurityAgency/ghidra/
https://github.com/facebook/infer/
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/debug-info-for-linux-binaries.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/debug-info-for-linux-binaries.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/debug-info-for-linux-binaries.html
https://wiki.ubuntu.com/Debug Symbol Packages/
https://wiki.ubuntu.com/Debug Symbol Packages/
https://llvm.org/docs/LangRef.html#llvm-lifetime-start-intrinsic
https://llvm.org/docs/LangRef.html#llvm-lifetime-start-intrinsic
https://github.com/travitch/whole-program-llvm/
https://github.com/travitch/whole-program-llvm/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/public-and-private-symbols/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/public-and-private-symbols/
https://hackingcpp.com/cpp/tools/build_systems.html
https://hackingcpp.com/cpp/tools/build_systems.html
https://en.wikipedia.org/wiki/List_of_compilers#C++_compilers
https://en.wikipedia.org/wiki/List_of_compilers#C++_compilers

[40] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon.
Inception:{System-Wide} security testing of {Real-World} embed-
ded systems software. In 27th USENIX Security Symposium (USENIX
Security 18), pages 309–326, 2018.

[41] Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta. rev. ng:
A multi-architecture framework for reverse engineering and vulnera-
bility discovery. In 2018 International Carnahan Conference on Security
Technology (ICCST), pages 1–5. IEEE, 2018.

[42] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. rev.
ng: a unified binary analysis framework to recover cfgs and function
boundaries. In Proceedings of the 26th International Conference on
Compiler Construction, pages 131–141, 2017.

[43] Giuseppe Antonio Di Luna, Davide Italiano, Luca Massarelli, Sebastian
Österlund, Cristiano Giuffrida, and Leonardo Querzoni. Who’s debug-
ging the debuggers? exposing debug information bugs in optimized
binaries. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
pages 1034–1045, 2021.

[44] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
Retrowrite: Statically instrumenting cots binaries for fuzzing and sani-
tization. In 2020 IEEE Symposium on Security and Privacy (SP), pages
1497–1511. IEEE, 2020.

[45] Michael J Eager et al. Introduction to the dwarf debugging format.
Group, 2007.

[46] Andrew Edwards, Hoi Vo, and Amitabh Srivastava. Vulcan binary
transformation in a distributed environment. 2001.

[47] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson,
and Rajeev Barua. Scalable variable and data type detection in a
binary rewriter. In Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation, pages 51–60, 2013.

[48] Gang Fan, Chengpeng Wang, Rongxin Wu, Xiao Xiao, Qingkai Shi,
and Charles Zhang. Escaping dependency hell: finding build depen-
dency errors with the unified dependency graph. In Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 463–474, 2020.

[49] Behrad Garmany, Martin Stoffel, Robert Gawlik, and Thorsten Holz.
Static detection of uninitialized stack variables in binary code. In
European Symposium on Research in Computer Security, pages 68–87.
Springer, 2019.

[50] Samuel Z Guyer, Kathryn S McKinley, and Daniel Frampton. Free-
me: a static analysis for automatic individual object reclamation. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 364–375, 2006.

[51] Niranjan Hasabnis and R Sekar. Lifting assembly to intermediate
representation: A novel approach leveraging compilers. In Proceedings
of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 311–324,
2016.

[52] R. Nigel Horspool and Nenad Marovac. An approach to the problem of
detranslation of computer programs. The Computer Journal, 23(3):223–
229, 1980.

[53] David Hovemeyer and William Pugh. Finding more null pointer bugs,
but not too many. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages
9–14, 2007.

[54] Tiago Trevisan Jost. Compilation and optimizations for variable pre-
cision floating-Point arithmetic: from language and libraries to code
generation. PhD thesis, Université Grenoble Alpes [2020-....], 2021.

[55] Vini Kanvar and Uday P Khedker. Heap abstractions for static analysis.
ACM Computing Surveys (CSUR), 49(2):1–47, 2016.

[56] Brian W Kernighan and Dennis M Ritchie. The c programming lan-
guage. 2002.

[57] Hyungjoon Koo, Yaohui Chen, Long Lu, Vasileios P Kemerlis, and
Michalis Polychronakis. Compiler-assisted code randomization. In

2018 IEEE Symposium on Security and Privacy (SP), pages 461–477.
IEEE, 2018.

[58] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Sympo-
sium on Code Generation and Optimization, 2004. CGO 2004., pages
75–86. IEEE, 2004.

[59] Michael A Laurenzano, Mustafa M Tikir, Laura Carrington, and Allan
Snavely. Pebil: Efficient static binary instrumentation for linux. In
2010 IEEE International Symposium on Performance Analysis of Systems
& Software (ISPASS), pages 175–183. IEEE, 2010.

[60] Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr,
and Nuno P Lopes. Reconciling high-level optimizations and low-level
code in llvm. Proceedings of the ACM on Programming Languages,
2(OOPSLA):1–28, 2018.

[61] Xavier Leroy and Sandrine Blazy. Formal verification of a c-like mem-
ory model and its uses for verifying program transformations. Journal
of Automated Reasoning, 41:1–31, 2008.

[62] Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. Debug infor-
mation validation for optimized code. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 1052–1065, 2020.

[63] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, and Yuyan Bao. Sok: De-
mystifying binary lifters through the lens of downstream applications.
In 2022 2022 IEEE Symposium on Security and Privacy (SP)(SP). IEEE
Computer Society, Los Alamitos, CA, USA, pages 453–472, 2022.

[64] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu.
Semantics-based obfuscation-resilient binary code similarity compari-
son with applications to software and algorithm plagiarism detection.
IEEE Transactions on Software Engineering, 43(12):1157–1177, 2017.

[65] Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Da-
vide Balzarotti. The convergence of source code and binary vulner-
ability discovery–a case study. In ASIACCS 2022, 17th ACM ASIA
Conference on Computer and Communications Security, 30 May-3 June
2022, Nagasaki, Japan, 2022.

[66] Shane McIntosh, Bram Adams, Thanh HD Nguyen, Yasutaka Kamei,
and Ahmed E Hassan. An empirical study of build maintenance ef-
fort. In Proceedings of the 33rd international conference on software
engineering, pages 141–150, 2011.

[67] Julia Menapace, Jim Kingdon, and DavidMacKenzie. The” stabs” debug
format. Technical report, Technical report, Cygnus support, 1992.

[68] Greg Morrisett, DavidWalker, Karl Crary, and Neal Glew. From system
f to typed assembly language. ACM Transactions on Programming
Languages and Systems (TOPLAS), 21(3):527–568, 1999.

[69] Steven Muchnick et al. Advanced compiler design implementation.
Morgan kaufmann, 1997.

[70] Ben Niu and Gang Tan. Modular control-flow integrity. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 577–587, 2014.

[71] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and
Kwangkeun Yi. Selective context-sensitivity guided by impact pre-
analysis. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 475–484,
2014.

[72] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
Bolt: a practical binary optimizer for data centers and beyond. In 2019
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pages 2–14. IEEE, 2019.

[73] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen, Georgios
Portokalidis, Bing Mao, and Jun Xu. Sok: All you ever wanted to know
about x86/x64 binary disassembly but were afraid to ask. In 2021 IEEE
Symposium on Security and Privacy (SP), pages 833–851. IEEE, 2021.

[74] Chengbin Pang, Tiantai Zhang, Ruotong Yu, Bing Mao, and Jun Xu.
Ground truth for binary disassembly is not easy. In 31st USENIX
Security Symposium (USENIX Security 22), pages 2479–2495, 2022.

16

[75] Jihee Park, Sungho Lee, Jaemin Hong, and Sukyoung Ryu. Static
analysis of jni programs via binary decompilation. IEEE Transactions
on Software Engineering, 2023.

[76] Quoc-Sang Phan, Kim-Hao Nguyen, and ThanhVu Nguyen. The chal-
lenges of shift left static analysis. In 2023 IEEE/ACM 45th International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 340–342. IEEE, 2023.

[77] Sebastian Poeplau and Aurélien Francillon. Systematic comparison of
symbolic execution systems: intermediate representation and its gener-
ation. In Proceedings of the 35th Annual Computer Security Applications
Conference, pages 163–176, 2019.

[78] Zvonimir Rakamarić and Alan J Hu. A scalable memory model for
low-level code. In Verification, Model Checking, and Abstract Interpre-
tation: 10th International Conference, VMCAI 2009, Savannah, GA, USA,
January 18-20, 2009. Proceedings 10, pages 290–304. Springer, 2009.

[79] Valentin Robert and Xavier Leroy. A formally-verified alias analysis.
In International Conference on Certified Programs and Proofs, pages
11–26. Springer, 2012.

[80] Rodrigo CO Rocha, Dennis Sprokholt, Martin Fink, Redha Gouicem,
Tom Spink, Soham Chakraborty, and Pramod Bhatotia. Lasagne: a
static binary translator for weak memory model architectures. In
Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 888–902,
2022.

[81] LA Sandra. Phb practical handbook of curve fitting. ed: CRC Press:
Boca Raton, FL, USA, 1994.

[82] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Phasar: An
inter-procedural static analysis framework for c/c++. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 393–410. Springer, 2019.

[83] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and
Charles Zhang. Pinpoint: Fast and precise sparse value flow analysis
for million lines of code. In Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
693–706, 2018.

[84] Yulei Sui and Jingling Xue. Svf: interprocedural static value-flow
analysis in llvm. In Proceedings of the 25th international conference on
compiler construction, pages 265–266, 2016.

[85] Yulei Sui, Ding Ye, and Jingling Xue. Detecting memory leaks statically
with full-sparse value-flow analysis. IEEE Transactions on Software
Engineering, 40(2):107–122, 2014.

[86] Nathan R Tallent, John M Mellor-Crummey, and Michael W Fagan.
Binary analysis for measurement and attribution of program perfor-
mance. ACM Sigplan Notices, 44(6):441–452, 2009.

[87] Juliet Test. The juliet 1.1 c/c++ and java test suite. 2012.
[88] S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar

Desarkar, Ramakrishna Upadrasta, and YN Srikant. Ir2vec: Llvm ir
based scalable program embeddings. ACM Transactions on Architecture
and Code Optimization (TACO), 17(4):1–27, 2020.

[89] Freek Verbeek, Joshua Bockenek, Zhoulai Fu, and Binoy Ravindran.
Formally verified lifting of c-compiled x86-64 binaries. In 2022 43rd
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI), 2022.

[90] Freek Verbeek, Pierre Olivier, and Binoy Ravindran. Sound c code de-
compilation for a subset of x86-64 binaries. In International Conference
on Software Engineering and Formal Methods, pages 247–264. Springer,
2020.

[91] Richard Wartell, Yan Zhou, Kevin W Hamlen, Murat Kantarcioglu, and
Bhavani Thuraisingham. Differentiating code from data in x86 binaries.
In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 522–536. Springer, 2011.

[92] David Williams-King, Graham Gobieski, Kent Williams-King, James P
Blake, Xinhao Yuan, Patrick Colp, Michelle Zheng, Vasileios P Kemerlis,

Junfeng Yang, and William Aiello. Shuffler: Fast and deployable con-
tinuous code {Re-Randomization}. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages 367–
382, 2016.

[93] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Gra-
ham Patterson, Frank Spano, Yu JianWu, Junfeng Yang, and Vasileios P
Kemerlis. Egalito: Layout-agnostic binary recompilation. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages 133–147,
2020.

[94] Yichen Xie and Alex Aiken. Context-and path-sensitive memory leak
detection. In Proceedings of the 10th European software engineering
conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 115–125, 2005.

[95] Dongrui Zeng and Gang Tan. From debugging-information based
binary-level type inference to cfg generation. In Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy,
pages 366–376, 2018.

17

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Our Technique

	2 Motivation
	2.1 Motivating Example
	2.2 Limitations of Existing Approaches
	2.3 Our Technique

	3 Stack Disambiguation
	3.1 Must Scope Inference
	3.2 May Scope Inference

	4 Type Enforcement
	4.1 Transformation Rules
	4.2 Fixed point Algorithm

	5 Evaluation
	5.1 Comparison with Existing Lifters
	5.2 Generalization to Other Compilers
	5.3 Scalability
	5.4 Ablation Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

