
GiantSan: Efficient Memory Sanitization
with Segment Folding

Hao Ling
The Hong Kong University of Science

and Technology, China
hlingab@cse.ust.hk

Heqing Huang∗
City University of Hong Kong, China

heqhuang@cityu.edu.hk

Chengpeng Wang
The Hong Kong University of Science

and Technology, China
cwangch@cse.ust.hk

Yuandao Cai
The Hong Kong University of Science

and Technology, China
ycaibb@cse.ust.hk

Charles Zhang
The Hong Kong University of Science

and Technology, China
charlesz@cse.ust.hk

Abstract
Memory safety sanitizers, the sharp weapon for detecting
invalid memory operations during execution, employ run-
time metadata to model the memory and help find mem-
ory errors hidden in the programs. However, location-based
methods, the most widely deployed memory sanitization
methods thanks to their high compatibility, face the low pro-
tection density issue: the number of bytes safeguarded by
one metadata is limited. As a result, numerous memory ac-
cesses require loading excessive metadata, leading to a high
runtime overhead.
To address this issue, we propose a new shadow encod-

ing with segment folding to increase the protection density.
Specifically, we characterize neighboring bytes with iden-
tical metadata by building novel summaries, called folded
segments, on those bytes to reduce unnecessary metadata
loadings. The new encoding uses less metadata to safeguard
large memory regions, speeding up memory sanitization.

We implement our designed technique as GiantSan. Our
evaluation using the SPEC CPU 2017 benchmark shows that
GiantSan outperforms the state-of-the-art methods with
59.10% and 38.52% less runtime overhead than ASan and
ASan--, respectively. Moreover, under the same redzone set-
ting, GiantSan detects 463 fewer false negative cases than
ASan and ASan-- in testing the real-world project PHP.

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640391

ACM Reference Format:
Hao Ling, HeqingHuang, ChengpengWang, YuandaoCai, and Charles
Zhang. 2024. GiantSan: Efficient Memory Sanitization with Seg-
ment Folding. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3620665.3640391

1 Introduction
The freedom to manipulate memory through pointers guar-
anteed by unsafe languages like C andC++ leads to numerous
kinds of memory safety violations. As reported in the 2022
CWE Top 25 Most Dangerous Software Weaknesses [40],
for instance, out-of-bounds write, out-of-bounds read, and
use-after-free rank 1st, 5th, and 7th among all weaknesses,
respectively. For program reliability, researchers have pro-
posed a series of memory sanitizing techniques [2, 9, 11, 12,
19, 23, 25, 29, 30, 34, 36, 41, 42] to detect invalid memory
operations during the program execution.
Though tremendous efforts have been made to improve

memory sanitization, most methods have limited compatibil-
ity, resulting in false negatives or low efficiency in many sce-
narios. Pointer-based methods, for instance, protect memory
accesses with buffer bounds propagated along with pointer
arithmetics. However, the propagation highly depends on
program instrumentation with type information of point-
ers, which is not always available. It is a well-known is-
sue [4, 9, 11, 23, 25, 29, 30, 35, 37, 39] that propagation often
fails due to pointer-integer casting or uninstrumented exter-
nal libraries without type information (e.g., third-party codes
distributed in binary form). As a result, the pointer-based
sanitizers cannot detect errors once the propagation fails.
Location-based methods stand out among the various

memory sanitizers due to their high compatibility, which
comes from a simpler safety model that does not rely on
pointer information to maintain metadata. Specifically, each
byte in the memory is assigned one of the two states, ad-
dressable or non-addressable, and a memory access is safe
if the target bytes are all addressable. The addressability
states are stored in a dedicated shadow memory and can

1

https://doi.org/10.1145/3620665.3640391
https://doi.org/10.1145/3620665.3640391

be retrieved anytime, eliminating the need for instrumenta-
tion to propagate metadata. For compatibility considerations,
memory sanitizers integrated into GCC [13], LLVM [24]
compiler projects, and Android [3] system are all location-
based [26, 34, 35].

However, though location-based methods offer high com-
patibility and are fast in metadata maintenance [37], they
are deficient in protecting memory operations 1 involving
multiple instructions, and they require excessive runtime
checks compared with other methods like pointer-based solu-
tions. Specifically, pointer-based methods safeguard memory
operations by checking whether the memory region being
accessed is within a safe bound. In contrast, location-based
methods do not have such a bound, and they have to break
operations down into instructions and check each instruction
separately to ensure no non-addressable bytes are accessed.
Therefore, though location-based methods save time in meta-
data maintenance, they incur more runtime checks, which
are time-consuming.
The root cause of the excessive check issue is the low

protection density caused by the inefficient shadow memory
encoding. The protection density is the number of bytes
safeguarded by one piece of metadata. Each byte in the mem-
ory has two different states: addressable or non-addressable.
Technically, it requires at least one bit to distinguish the two
states. Therefore, on average, location-based methods must
load and decode one shadow byte for every eight memory
bytes. The protection density can be slightly increased ac-
cording to memory alignment: some consecutive bytes must
be both addressable or non-addressable, and thus their states
can be merged. However, most objects are only guaranteed
to be 8-byte aligned, and this optimization is limited to a few
neighboring bytes.
Figure 1 illustrates the shadow encoding with the low

protection density in the most widely deployed sanitizer,
AddressSanitizer (a.k.a. ASan) [34]. It partitions the vir-
tual memory space into a sequence of aligned segments and
employs one 8-bit integer (called the segment state in this pa-
per) to encode all byte states within the segment. Segments
are sized at 8 bytes so that no two objects share the same
segment 2. Checking a memory region containing 𝑆 bytes
requires loading ⌈𝑆8 ⌉ segment states, which results in signif-
icant runtime overhead. For instance, checking whether a
1KB region contains a non-addressable byte requires loading
128 segment states in ASan. A past study [42] shows that
ASan is about 2× slower than native execution, and about
80% of the overhead comes from excessive runtime checks
and metadata loadings.

1In this paper, a memory operation refers to a series of instructions manip-
ulating the memory region of the same object. For example, “memset(p, 0,
1024)” is one memory operation manipulating 1024 bytes and consists of at
least 1024/8 = 128 mov instructions related to 𝑝 in a 64-bit system.
2ASan assumes all objects are 8-byte aligned, which is satisfied in most
cases due to the basic assumption of heap allocation.

State: 0x4

Addressable Non-Addressable

State: 0x0 State: 0xfa

first 4 bytes
addressable

all 8 bytes
addressable

non-addressable
region in the heap

Figure 1. Shadow encoding in ASan. Objects are 8-byte
aligned. The addressable bytes within a segment must oc-
cupy a prefix of the segment. By default, ASan uses eight
different state codes for addressable bytes within the seg-
ments and reserves the other state codes for other purposes
(e.g., recording why the bytes are non-addressable).

Memory object

good good good good good good good part
Shadow
Memory bad bad

Task: check the
region [L, R)4 "good" segments

i i d

L R

(a) Existing location-based encoding. “good”: all bytes in the segment are
addressable; “bad”: all bytes are non-addressable; “part”: only some bytes
in the segment are addressable (partially good).

Memory object

4 good 2 good good part
Shadow
Memory bad bad

1 folded segment visited
Task: check the
region [L, R)

L R

(b) Segment Folding: build a summary for “good” segments. Only one
folded segment needs to be visited instead of four unfolded ones for the
region [𝐿, 𝑅) .

Figure 2. Folded segments reduce metadata loadings.

This paper addresses the low protection density issue to
improve the efficiency of location-based memory sanitiza-
tion. Despite the various segment states, almost all segments
visited during the execution are “good” segments (i.e., the seg-
ments without non-addressable bytes) because most memory
operations are safe and only manipulate addressable bytes.
Inspired by this observation, our key insight is to build a
summary for “good” segments to help reduce segment state
loadings, thus increasing the sanitizing efficiency. We call
the summarizing process “segment folding”.

2

Let us illustrate our insight with Figure 2. Figure 2a shows
how existing methods work: when accessing a memory re-
gion, they need to check all segments to ensure all accessed
bytes are addressable. Checking the region [𝐿, 𝑅) involves 4
segments, and all those segments are “good” since this region
is safe to access. Figure 2b shows how the segment folding
works: it builds a summary of the “good” segments and uses
the summary of segments to speed up the checking of the
region [𝐿, 𝑅). However, the folding is not free: storing the
summary needs extra shadow memory space.

To reduce the shadow memory required to store the sum-
mary, we design the binary folding strategy: a folded segment
only summarizes 2𝑥 “good” segments for some integer 𝑥 . In
a modern 64-bit system, 𝑥 cannot exceed 64 because the max-
imum object size is less than 264. As a result, six shadow bits
are sufficient to record the folding degree 𝑥 . Combined with
the 8-byte alignment optimization, all the segment states and
the folding degree 𝑥 can be recorded in one 8-bit integer. As
a result, the new shadow memory encoding with segment
folding is compact enough to build upon the shadowmemory
widely adopted by existing location-based methods.

We present GiantSan, a dynamic memory error detec-
tor with a novel shadow encoding based on segment fold-
ing. To the best of our knowledge, GiantSan is the first
location-based method that can safeguard a sequential re-
gion of arbitrary size in𝑂 (1) time.We evaluateGiantSan on
SPEC2017, the industry-standard CPU-intensive benchmark
suite. GiantSan reduces the geometric mean runtime over-
head down to 46.04%, compared with 74.89% and 112.58% in
the state-of-the-art location-based designs ASan-- [42] and
ASan [34], respectively. The promising result indicates that
GiantSan outperforms its competitors.

To sum up, this work makes the following contributions:

• We formulate and summarize the low protection density
issue of location-based sanitizers.

• We introduce the segment folding algorithm to in-
crease protection density significantly.

• We implement our approach as a tool namedGiantSan
and provide empirical evidence that it outperforms the
state-of-the-art methods with less runtime overhead.

2 Technical Background
This section introduces fundamental knowledge about exist-
ing memory sanitizing techniques.

2.1 Existing Solutions for Memory Safety
There are two categories of memory safety violations: 1) Spa-
tial Errors: access memory locations outside the allocated
region of objects, and 2) Temporal Errors: access an object
when it is not valid (e.g., unallocated or deallocated).

Although many memory safety violation detecting tools
have been proposed [5–7, 9, 11, 12, 19, 21, 22, 25, 30, 33,
34, 36, 41, 42], many only provide partial memory safety

guarantees. Some, like Softbound [29], Delta Pointers [22],
TailCheck [15], and LFP [9, 11], only support the detection
of spatial errors. In contrast, other trends of existing work,
like CETS [30] and PTAuth [12], only support the detection
of temporal errors.
All sanitizers need extra metadata to model the memory

and validate whether one memory region can be accessed.
Among the existing efforts to provide a full safety guarantee,
there are two main philosophies:

• Pointer-based: Pointer-based methods [6, 9, 11, 12,
15, 21, 22, 25, 30, 33] model the memory from the per-
spective of pointers by tracking the memory region
safe to access for each pointer. They encapsulate the
pointer and a tag in a new pointer representation, and
they use the tag as the bound for the safe region or as
the index for retrieving the bound.

• Location-based: Location-based methods [5, 7, 19, 34,
36, 41, 42] model the memory from the perspective of
memory bytes by recording which byte is addressable.
The byte states are recorded in a compact shadowmem-
ory, and location-based methods inspect the shadow
memory to check the state of each accessed byte.

The core difference between the two philosophies is the de-
pendence on the data type information of pointers. Specifically,
whenever pointer arithmetic creates a new pointer, pointer-
based methods need to convert it into the new pointer rep-
resentation and propagate the tag from the source pointer
to the new pointer. Therefore, in pointer-based methods, all
instructions must be aware of whether they are manipulat-
ing pointers so that the tag is propagated correctly and not
misused. In contrast, memory protection in location-based
methods only depends on the metadata binding to the mem-
ory address instead of pointers.
Unfortunately, the type information of pointers is not

always available. For example, programs can use external
libraries distributed in binary formwithout type information,
and all values are treated as integers. Moreover, even with
the source codes available, the type information of pointers
may not be available since the pointer-integer casting can
eliminate the type information. The casting converts pointers
into integers, and later, pointers are manipulated by integer
arithmetic instead of pointer arithmetic. As a result, it is
challenging to distinguish between the customized pointer
representation and the native integers, which might result
in tag misuse or tag propagation failure [4, 9, 11, 23, 25, 29,
30, 35, 37, 39].
Once the pointer tag is lost due to propagation failure,

the pointer-based methods cannot protect the pointer and
all new pointers derived from it. Some efforts attempt [2,
9, 11, 21] to recover from the tag loss by obtaining a new
tag based on the pointer values from dedicated data struc-
tures, e.g., shadow memory, similar to the location-based
methods. However, location-based methods only require

3

distinguishing two states of bytes with a compact shadow
memory. In contrast, keeping tags to distinguish different ob-
jects requires a much larger shadow memory. Large shadow
memory causes excessive memory consumption and sig-
nificantly affects runtime efficiency due to a high memory
footprint [34, 37].

One of the most representative efforts in tag reobtaining is
the Baggy Bound Checking (BBC) [2]. To avoid large shadow
memory footprints, it rounds allocation sizes up to a power
of two to reduce the total variety of tags. As a result, it
cannot detect errors within the rounded-up allocation size.
For example, it cannot detect the out-of-bound access “p[700]”
for a buffer “char p[600]” because the buffer is rounded up
to “char p[1024]”. Therefore, due to the tolerance of many
spatial violations, BBC is less suitable for testing [2, 37].

Due to their high dependence on pointer type information,
pointer-based methods are less compatible in the compli-
cated real-world testing environment. In contrast, location-
based methods are much more widely adopted because they
only need to know which memory address is being accessed.
That is why general-purpose compiler projects like LLVM
and GCC only integrate location-based methods. However,
location-basedmethods have their own efficiency issue, which
we aim to address in this paper, discussed in the following.

2.2 Location-based checking with shadow memory
Shadow memory is a technique to monitor and maintain
the states of bytes in the memory, widely used in memory
safety sanitizers [5, 17, 34–36, 41, 42]. It is the most effi-
cient data structure to implement location-based methods.
Location-based methods partition the virtual memory space
into fixed-sized segments and use shadow memory to record
the segment state, which encodes the states of bytes within
the segment. Specifically, shadow memory is an array of
shadow units, each of which stores a piece of metadata. We
use the notation m to represent the global array, 𝑁 for the
number of segments, and 𝑆𝑠ℎ𝑎𝑑𝑜𝑤 for the size of each seg-
ment. The following is how shadow memory is declared:

ShadowUnitType m[N];

Given a memory address 𝑝 , the state of the segment cov-
ering the address 𝑝 can be loaded by:

m[(intptr_t)𝑝/𝑆𝑠ℎ𝑎𝑑𝑜𝑤]

Location-based methods can only detect whether a byte
is addressable but cannot guarantee that the byte belongs
to the desired object. Most existing location-based methods
integrate redzones [19, 34, 36, 41, 42] and memory quaran-
tine [1, 19, 34, 36, 41, 42] to detect sophisticated memory
errors. Specifically, redzones are non-addressable paddings
between objects (for spatial error detection), and memory
quarantine delays the re-allocation of memory regions to
ensure that an object’s memory region is not addressable
during a particular time (for temporal error detection).

Runtime Checks. Before accessing𝑤 bytes starting from
an address 𝑝 , location-based methods safeguard the memory
access by checkingwhether all𝑤 target bytes are addressable.
The metadata indicating the addressability of bytes comes
from the shadow memory. The metadata only has a limited
bit width (e.g., 8 bits) to enable compact shadow memory
and can not hold much information. As a result,𝑤 is small
in existing location-based methods so that the byte states
can be encoded with a limited bit width.

Example 1. ASan [34] uses 𝑆𝑠ℎ𝑎𝑑𝑜𝑤 = 8, and 8-bit signed
integers as the ShadowUnitType. 𝑚[𝑝] = 0 means the p-th
segment is a “good” segment (i.e., all bytes in this segment
are addressable), and𝑚[𝑝] = 𝑘 (1 ≤ 𝑘 ≤ 7) means the p-th
segment is a 𝑘-partial segment (i.e., only the first 𝑘 bytes in
this segment are addressable). ASan creates one runtime check
for all memory accesses with𝑤 ≤ 8:

1 int8_t v = m[p / 8];
2 if (v != 0 and (p & 7) + w > v) {
3 ReportError(p, w)
4 }
5 access [p, p + w)

The maximum allowable value of𝑤 determines the pro-
tection density: larger 𝑤 means more bytes can be safe-
guarded by the metadata, thus resulting in fewer metadata
loadings and runtime checks. However, for memory effi-
ciency, location-based methods need to use compact shadow
memory, which cannot allocate a large bit width for a piece of
metadata, and inefficient shadow encoding can only employ
small𝑤 and limits the protection density.

2.3 Problems and Challenges
In this section, we demonstrate how protection density af-
fects sanitizing efficiency by presenting two protection prin-
ciples used in different sanitizers: 1) operation-level protection
aims to protect a memory operation consisting of multi-
ple instructions as a whole, and 2) instruction-level protec-
tion safeguards each instruction separately. We discuss why
operation-level protection requires a high protection density
and generates fewer runtime checks. We also discuss the
challenges in enabling operation-level protection in location-
based methods.
A memory operation is a series of memory accesses to-

ward the allocated region of one single object. Table 1 shows
four types of commonly used runtime checks based on the
semantics of memory operations, all associated with the
pointer 𝑝 . For example, constant propagation can tell that
𝑝 [0], 𝑝 [10], and 𝑝 [20] are all memory accesses towards 𝑝
with constant offsets. Operation-level protection safeguards
all three instructions at once by testing [&𝑝 [0],&𝑝 [21]) ⊆
bound(𝑝). Similarly, the memset and bounded loop require
only one check under operation-level protection. In con-
trast, the instruction-level protection checks all instructions

4

Table 1. Difference between operation-level protection and instruction-level protection on the pointer 𝑝 . The Analysis Method
column shows the static analysis used to identify the operations in the source codes. 𝑁 in the fourth case is the size of vec.

Analysis Method Example # Checks (operation-level) # Checks (instruction-level)

Constant Propagation p[0] + p[10] + p[20] 1 3

Predefined Semantics memset(p, 0, N) 1 Θ(𝑁)

Loop Bound Analysis for (auto i = 0; i < N; i++)
p[i] = foo(i); 1 N

Must-alias Analysis
p[0] = 10
for (auto i : vec)
p[i] = foo(i);

1 slow check + N fast checks
(with bound cached)

N+1 slow checks
(with nothing cached)

executed separately. For example, 𝑝 [0], 𝑝 [10], and 𝑝 [20] in-
volve three instructions, and the instruction-level protection
checks each of them separately.

The operation-level protection requiresmuch fewer checks
than the instruction-level protection. However, it needs to ef-
ficiently check memory regions of arbitrary sizes, which,
unfortunately, is not available in existing location-based
methods, as discussed in Section 2.2. Therefore, existing
location-based methods utilize instruction-level protection.

Moreover, the operation-level protection can also reduce
metadata loadings with caching. The operation-level protec-
tion can cache the bound of 𝑝 for future memory accesses on
𝑝 , as listed in the fourth case of Table 1. Once the bound of 𝑝
is loaded when checking 𝑝 [0] = 10, the bound can be cached
in a local variable and used to check all instructions in the
loop. In contrast, the instruction-level protection separately
checks each instruction, and the metadata loaded can only
safeguard the corresponding instruction. Caching metadata
with low protection density cannot help speed up future
checks because it does not contain much information.
Summary. Existing location-based methods have the fol-
lowing deficiencies of the instruction-level protection, all
caused by the low protection density. We attempt to address
the deficiencies by increasing protection density.

• Inefficient in safeguarding large memory regions.
• Inefficient in caching history.

3 GiantSan in a Nutshell
We present GiantSan, a novel location-based sanitizer en-
abling operation-level protection. Our main observation is
that most segments being visited during execution are “good”
segments, so characterizing and protecting good-segment-
only memory regions with a customized summary suffice
in most cases. For example, in Figure 3a, the “Safe!” region
requires loading 5 segment states. In contrast, in Figure 3b,
GiantSan combines nearby “good” segments to avoid visit-
ing “good” segments repeatedly and conducts only 2 checks.
Figure 4 demonstrates two key phases of GiantSan:

Memory object redred freed

bad good good good good part bad freed
Shadow
Memory

Runtime
Check

Spatial Error:
visiting "bad" Safe! Temporal Error:

visiting "freed"

(a) Shadow memory technique. “good” means all bytes in the segment are
addressable; “part” means partially good - only the first several bytes in
the segment are addressable; “bad” and “freed” represent non-addressable
segments maintained by redzones and memory quarantine.

object redred freed

bad (2) (1) (1) (0) part bad freed
Shadow
Memory

Spatial Error:
visiting "bad" Safe! Temporal Error:

visiting "freed"

Runtime
Check

Memory

(b) “(𝑖)” indicates that this segment is a folded segment combining two
consecutive folded segments with the folding degree “(𝑖−1)”. In particular,
“(0)” indicates “good” segments. A segment with code “(𝑖)” summarizes
2𝑖 consecutive “good” segments.

Figure 3. High-level comparison between GiantSan and
existing approaches: the majority of consecutive segments
can be folded and checked as a whole.

• The runtime support library hooks all objects’ al-
location and deallocation to initialize the metadata in
shadow memory (Section 4.1) during the execution.

• The instrumentation system inserts checks to pro-
tect memory operations. Operation-level protection

5

(Section 4.4) requires different instrumentation logic
for consecutive region checks (Section 4.2) and history
caching (Section 4.3).

The runtime support library sets the metadata in the
shadow memory. Specifically, to implement the runtime sup-
port library, we first need to design metadata modeling the
memory by answering the following question:
Question 1: How to fold segments and encode the folded
segments in the shadow memory?
Solution: GiantSan employs the recursive binary folding
strategy: two consecutive “good” segments, or two consec-
utive folded segments with the same size, are combined to
form a new folded segment. As illustrated in Figure 3b, the
(1)-folded segment combines two “good” segments, and the
(2)-folded segment combines two (1)-folded segments. The
folded segments summarize addressable regions, speeding
up the segment checks, and only the folding degree (𝑖) needs
to be recorded. We discuss the details in Section 4.1.

GiantSan utilizes the optimized shadow memory to safe-
guard memory regions. To solve the deficiencies discussed
in Section 2.3, we face two main questions:
Question 2: How to efficiently safeguard given memory
regions with arbitrary sizes?
Solution: Safeguarding a memory region is simplified into
checking whether the folding degree is large enough. More
specifically, if we want to check whether 𝑁 consecutive seg-
ments contain non-addressable bytes, we can check whether
the first and last 2⌊log2 𝑁 ⌋ segments are folded, significantly
reducing the required metadata. We place the details of lo-
cating the folded segments in Section 4.2.
Question 3:How to build a cache to speed up further checks?
Solution: GiantSan caches the last folded segment visited
for a given pointer, which can be considered as a temporary
bound for all accesses checked. The bound helps reduce the
metadata loadings for future accesses on the same pointer.
We discuss the caching algorithm in Section 4.3.

4 Design
In this section, we present the design of GiantSan, an effi-
cient location-based sanitizer with high protection density.
Like existing location-based methods, GiantSan needs red-
zones and memory quarantine for sophisticated errors.
Figure 4 illustrates GiantSan’s general workflow. The

runtime support library hooks the object’s allocation to up-
date the shadow memory, and the instrumentation uses the
shadow memory to safeguard memory regions. Sections 4.1,
4.2, and 4.3 present detailed solutions to the three questions
mentioned in Section 3. Section 4.4 describes how to gener-
ate operation-level checks with static analysis. In the end,
Section 4.5 demonstrates the implementation details.

Source
Code

Memory
Operations

Protected
Memory

Operations

Region
Check §

History
Caching §

Protected
Code

Customized
Allocator

Protected
Memory

Operations

Update Segment States

Compilation-Phase Instrumentation

Execution

Retrieve Segment States

Error
Report

Runtime
Support

Operation-Level
Protection §

Shadow
Memory §

Figure 4. GiantSan’s workflow

4.1 Shadow Encoding in GiantSan
In this section, we describe GiantSan’s shadow memory
encoding.We choose the commonly used eight-byte segment
shadow memory as ASan [34]. The whole virtual memory
is divided into small segments of 8 bytes, and the metadata
for a segment is stored in an 8-bit data type. Same as ASan,
GiantSan ensures that all objects are 8-byte aligned, which
does not make a huge difference to the memory layout be-
cause, as discussed in previous work [34], most objects in
modern systems are naturally 8-byte aligned.
GiantSan achieves high protection density by building

summaries on “good” segments, the ones containing no non-
addressable bytes. The summary strategy is binary folding,
which locates and folds consecutive 2𝑥 “good” segments
and encodes the value 𝑥 in the shadow memory. The folded
segment containing 2𝑥 “good” segments is named as an (𝑥)-
folded segment. As illustrated in Figure 5, an 𝑥 value in the
shadow memory indicates at least 8 × 2𝑥 and less than
8 × 2𝑥+1 consecutive bytes are addressable. In modern 64-bit
systems, 𝑥 cannot exceed 64 because the maximum object
size is less than 264.
After introducing the folded segments, three categories

of segment states exist: 1) the folding degree 𝑖 for (𝑖)-folded
segments, 2) the value 𝑘 for k-partial segments, which has
only the first 𝑘 bytes addressable, and 3) error codes for non-
addressable segments. There are at most 64 different 𝑖 and
7 different 𝑘 . We use the denotation𝑚[𝑝] to represent the
metadata stored in the 𝑝-th shadow byte, and𝑚[𝑝] is defined
as follows:

6

Memory 8B

(2) (2) (2) (2) (1) (1) (0) 4-part
Shadow
Memory (3)

8B 8B 8B 8B 8B 8B 8B 8B

An object sized at 68 bytes

Figure 5. Shadow memory encoding for an object sized 68
bytes. “(𝑖)” represents an (𝑖)-folded segment. “4-part” repre-
sents a partial segmentwith only the first 4 bytes addressable.

Definition 1 (State Code). 𝑚[𝑝] is an 8-bit unsigned integer
that can store values within [0, 256).

𝑚[𝑝] =

64 − 𝑖, the p-th segment is an (i)-folded segment
72 − 𝑘, the p-th segment is a k-partial segment
> 72, error codes

Themonotonicity of𝑚 simplifiesmemory checks. A smaller
𝑚[𝑝] means more consecutive addressable bytes following
the 𝑝-th segments. Suppose that we want to check whether
the 𝑝-th segment is a folded segment with a folding degree
equal to or higher than 3. In that case, we only need to check
whether𝑚[𝑝] ≤ 64 − 3. Any𝑚[𝑝] breaking the inequality
indicates that there are non-addressable bytes in the memory
region [8𝑝, 8(𝑝 +23)). Checking the folding degree is the key
to memory protection, which is discussed later in Section 4.2.

Though the encoding is much more complicated than ex-
isting works [2, 9, 11, 31, 34, 36, 41, 42], updating the shadow
memory with the new encoding does not take extra computa-
tion. Technically, an allocated object has at most one partial
segment, and all remaining segments within the allocated
regions are folded. More formally, there are 2𝑖 consecutive
(𝑖)-folded segments, e.g., there is one (0)-folded segment,
two (1)-folded segments, and four (2)-folded segments. The
relative positions of the folded segments follow a simple pat-
tern illustrated in Figure 5. Based on this pattern, GiantSan
efficiently updates the shadow memory in linear time, the
same as existing works.

4.2 Region Checking
This section introduces how to use the new shadow memory
encoding to safeguard a memory region. A memory region
[𝐿, 𝑅) is safe if all except the last segment within this re-
gion are “good” segments and the first (𝑅 mod 8) bytes in
the last segment are addressable. GiantSan speeds up the
“good” segment checking with folded segments. Specifically,
GiantSan generates codes to safeguard a memory region
[𝐿, 𝑅), denoted as CI(L, R), in two steps. Let 𝑙 = ⌊ 𝐿8 ⌋, 𝑟 = ⌊ 𝑅8 ⌋:

Algorithm 1 CI(L, R).𝑚 is the shadow memory, and 𝐿 is a
multiple of 8 due to the 8-byte-alignment strategy.

1: uint8_t 𝑣 =𝑚[𝐿8] ⊲ 𝐿 ≡ 0(mod8)
2: uintptr_t 𝑢 = (𝑣 ≤ 64) ≪ (67 − 𝑣);
3: if 𝑢 < 𝑅 − 𝐿 then ⊲ fast check
4: if 𝑅 − 𝐿 ≥ 8 then
5: if 2 ∗ 𝑢 < 𝑅 − 𝐿 then ⊲ check folding degree
6: ReportError() ⊲ of the prefix
7: end if
8: if 𝑚[⌊ 𝑅−𝑢8 ⌋] ≠ 𝑣 then ⊲ check folding degree
9: ReportError() ⊲ of the suffix
10: end if
11: end if
12: if 𝑚[⌊ 𝑅−18 ⌋] > 72 − (𝑅&7) then ⊲ check the partial
13: ReportError() ⊲ segment at the
14: end if ⊲ end
15: end if

• The 𝑙-th, · · · , (𝑟 − 1)-th segments must all be “good”.
• The first (𝑅 mod 8) bytes in the 𝑟 -th segment are ad-
dressable.

Arbitrary 𝑁 consecutive “good” segments must be a union
of two (⌊log2 𝑁 ⌋)-folded segments. As illustrated in Fig-
ure 6a, if all 10 consecutive segments are “good”, the first
eight and the last eight “good” segments must be at least
(3)-folded. Therefore, we only need to check if the folding
degrees of a prefix and a suffix in the segment sequence are
large enough. There are only two cases when all segments
numbered from 𝑙 to 𝑟 − 1 are “good” (𝑡 = ⌊log2 𝑟 − 𝑙⌋):

• All segments are folded into one, and at least one (𝑡+1)-
folded segment exists, as illustrated in Figure 6b.

• All segments are divided into two (𝑡)-folded segments,
as illustrated in Figure 6c.

An important integer trick for efficient checking is that the
number of addressable bytes recorded in the 𝑝-th segment
is (𝑚[𝑝] ≤ 64) ≪ (67 −𝑚[𝑝]), where ≪ is the left-shift
arithmetic. The calculation result becomes 0 if 𝑚[𝑝] does
not represent a folded segment (i.e.,𝑚[𝑝] > 64). The trick
helps avoid calculating the expensive log2 function.
Algorithm 1 shows how to safeguard the interval [𝐿, 𝑅).

It contains two stages: the fast check (the case in Figure 6b)
and the slow check (the case in Figure 6c). The fast check is
cheap and suffices to safeguard most memory regions, while
the slow check handles the remaining rare cases.

• The fast check (Lines 1~3) finds a safe region [𝐿, 𝐿 +𝑢)
without non-addressable bytes based on the folded
segment recorded at𝑚[𝐿8]. If [𝐿, 𝑅) is within [𝐿, 𝐿+𝑢),
[𝐿, 𝑅) must be safe. According to the definition of the
folded segment, 𝑢 covers > 50% of the addressable
bytes following 𝐿; thus, 𝑢 is large enough to safeguard
the majority of the regions.

7

(3) (3) (3) (2) (2) (2) (2) (1) (1)

at least (3)-folded

at least (3)-folded

(0)

(a) Checking 10 segments

(>t)

more than (t)-folded

...

(b) Case 1: one folded segment

(t) ... (t)

(t)-folded

(t)-folded

...

(c) Case 2: two folded segments

Figure 6. Checking whether the 𝑙-th, 𝑙 +1-th, · · · , (𝑟 −1)-th segments are all “good” based on folded segments. 𝑡 = ⌊log2 (𝑟 −𝑙)⌋.

(2) (2) (2) (2) (1) (1) (0) 4-part
Shadow
Memory (3)

Start

(2)-folded (1)-folded (0)-folded

Figure 7. Locating the bound with folded segments

• The slow check (Lines 4~14) 3 verifies three parts:
whether non-addressable bytes exist in 1) the prefix, 2)
the suffix, and 3) the last segment of [𝐿, 𝑅). The slow
check handles the case illustrated in Figure 6c, which
is much more infrequent than the cases handled by
the fast check.

This algorithm fully utilizes folded segments: folded seg-
ments summarize the majority (> 50%) of neighboring bytes
in arbitrary safe regions, and the fast check efficiently safe-
guards any region within an existing summary. The region
outside the fast check’s scope is split into (at most) two folded
segments and handled by the slow check, which is invoked
only when the fast check fails. The slow check is also an
O(1)-time algorithm with a better time complexity than ex-
isting location-based methods. Therefore, this algorithm can
check a region with arbitrary size in constant time.

4.3 History Caching
History caching helps reduce metadata loadings on the same
pointer. Intuitively, caching mainly speeds up memory pro-
tection within loops (the number of accesses outside loops is
relatively limited). Thus, to better illustrate our method, we
explain GiantSan’s caching solution with accesses in loops.
The ideal values to be cached are the bounds of pointers

since memory accesses falling within the bound do not need
extra metadata. GiantSan can locate the bound by skipping
over folded segments, as illustrated in Figure 7. The number
of skipping is at most ⌈log2 𝑛

8 ⌉, where 𝑛 is the size of the
object, because the folding degree decreases by at least 1
after one skip and the maximum folding degree is ⌈log2 𝑛

8 ⌉.
Although the skipping is fast, it still takes time and is

not a constant-time process. Therefore, GiantSan employs
on-demand skipping to save time. Whenever GiantSan con-
ducts a pointer dereference check, GiantSan caches the

3Codes at Lines 4, 12-14 are unnecessary if (𝑅−𝐿) mod 8 = 0 can be proved
with static type information, e.g., reading an array of int64_t.

maximum valid address (called the quasi-bound) implied
by the folded segment examined. In future dereference, the
bound checks can use the quasi-bound until the dereference
goes beyond the quasi-bound. GiantSan gets a new max-
imum valid address from the new folded segment visited.
GiantSan reduces metadata loadings with the quasi-bound.

Figure 9 demonstrates caching logic for thememory access
at Line 10 in Figure 8a. GiantSan creates a local variable,
ub, as the quasi-bound for the buffer y. As illustrated in
Figure 9, initially, the quasi-bound equals 0 because the size
of the buffer is unknown. During the execution of the loop,
GiantSan checks whether the offset j is beyond the quasi-
bound (Line 4). If it goes beyond the bound,GiantSan checks
𝑦 [𝑗] individually (Line 5) and updates ub (Line 7). After the
quasi-bound update, ub is closer to the actual bound of the
region, and as discussed above, the number of ub’s updating
is at most ⌈log2 𝑛

8 ⌉. Further memory accesses on 𝑦 that fall
within the quasi-bound do not need additional metadata
loadings and speed up the runtime checks.

GiantSan also detects underflow (Lines 9-11) and tempo-
ral errors (Line 14). Technically, GiantSan does not create a
quasi-lower bound because it is widely reported [22, 27] that
the number of accesses with negative offsets is far less fre-
quent than positive offsets. Therefore, using a dedicated CI to
check underflow results in negligible cost. Moreover, the ob-
ject pointed by 𝑦 can be freed during the loop execution, and
a final check after the loop can capture the deallocation [42].

4.4 Check Instance Generation
This section describes enabling operation-level protection to
reduce runtime overhead in GiantSan. We mainly discuss
two categories of check instances supported by GiantSan,
which improve the efficiency of location-based methods.

4.4.1 Anchor-based Enhancement. Location-basedmeth-
ods insert redzones between objects to detect overflow. How-
ever, small redzones can be bypassed [17], while large red-
zones negatively impact memory performance. Our solution
is to set a small redzone between objects and select an an-
chor point. When safeguarding memory accesses, GiantSan
checks whether a redzone exists between the anchor point
and the accessed location. For most memory accesses, the

8

1 void foo(int **p, int N) {
2
3 int *x = p[0];
4
5 int *y = p[1];
6 for (int i = 0; i < N; i++) {
7
8 int j = x[i];
9
10 y[j] = i;
11 }
12
13 memset(x, 0, N * sizeof(int));
14 }

(a) Source Code

1 void foo(int **p, int N) {
2 CI(p, p + 4);
3 int *x = p[0];
4 CI(p, p + 8);
5 int *y = p[1];
6 for (int i = 0; i < N; i++) {
7 CI(x, x + 4 * i + 4);
8 int j = x[i];
9 CI(y, y + 4 * j + 4);
10 y[j] = i;
11 }
12 CI(x, x + 4 * N);
13 memset(x, 0, N * sizeof(int));
14 }

(b) Check Instances (before merging)

1 void foo(int **p, int N) {
2 CI(p, p + 8);
3 int *x = p[0];
4 int *y = p[1];
5 CI(x, x + 4 * N);
6 for (int i = 0; i < N; i++) {
7
8 int j = x[i];
9 CI(y, y + 4 * j + 4) (cached);
10 y[j] = i;
11 }
12
13 memset(x, 0, N * sizeof(int));
14 }

(c) Check Instances (after merging and caching)

Figure 8. Operation-level protection instrumentation that significantly reduces runtime checks and metadata loadings

1 uintptr_t ub = 0;
2 for (int i = 0; i < N; i++) {
3 int j = x[i];
4 if (4 * j >= ub)) {
5 CI(y, y + 4 * j + 4);
6 v = m[(y + 4 * j) >> 3];
7 ub = 4 * j + (v <= 64) << (67 - v);
8 }
9 if (j < 0) {
10 CI(y + 4 * j, y);
11 }
12 y[j] = i;
13 }
14 CI(y, y + ub);

Figure 9. Quasi-bound instrumentation for y[j] in Fig-
ure 8a (Line 10) to reduce metadata loadings with caching.

base pointer of a buffer is chosen as the anchor point 4. This
optimization eliminates the trade-offs on redzone sizes and
protects memory efficiently and precisely.

Take the memory access y[j] at Line 10 in Figure 8a as an
example. Existing location-based sanitizers only check the
region [𝑦+4 𝑗, 𝑦+4 𝑗+4) because they only protect thememory
region at the instruction level. It can result in a false negative
if 𝑗 is large enough to bypass the redzone within [𝑦,𝑦 + 4 𝑗)
(if it exists). Existing methods have to enlarge the redzone
size to avoid this false negative. Instead, GiantSan uses the
base pointer 𝑦 as the anchor point and checks the region
[𝑦,𝑦 + 4 𝑗 + 4) to ensure y[j] is indeed a valid location within
the same memory region as y. This method only requires
a one-byte redzone, thus eliminating the need to use large
redzones and significantly increasing runtime efficiency.

4Some programmers would purposely employ undefined behaviors, e.g.,
using an out-of-bound base pointer to simulate 1-based arrays, which we
consider as bugs by default.GiantSan can use the first dereferenced address
as the anchor point to turn off the warning for the undefined behaviors.

4.4.2 Operation-level Checks. Due to the capability to
handle arbitrary memory regions and history caching, Gi-
antSan uses operation-level protection, which can signifi-
cantly reduce the number of runtime checks. During com-
pilation, GiantSan first scans all instructions and intrin-
sic functions that manipulate the memory to generate the
instruction-level checks. Later, it uses static analysis tomerge
and eliminate unnecessary checks to increase efficiency.

For example, there are five different codes accessing mem-
ory in Figure 8a. Figure 8b shows the checks generated in
the first stage (all array accesses are anchor-based enhanced).
GiantSan later merges checks with static analysis; the fi-
nal result is shown in Figure 8c. After the merging, only 2
checks and 𝑁 cached checks are required, much fewer than
the 2 + 3𝑁 checks in existing location-based methods. We
discuss the static analysis for check merging in the following.
AliasedCheck Elimination. Existing efforts [9, 11, 25, 34,
42] demonstrate that sanitization tasks could be removed or
merged (e.g., 𝑝 [0] and 𝑝 [1] in Figure 8a) to reduce the num-
ber of memory region safeguarding requests if the accessed
pointers are must-aliased. GiantSan adopts the LLVM’s
intra-procedural must-alias analysis to detect aliased checks.
Check-in-Loop Promotion. Memory accesses in loops
can raise multiple checks during the execution (e.g., Line 7
and Line 9 in Figure 8b). GiantSan runs SCEV analysis [28]
to identify bounded loops and reduce runtime checks. For ex-
ample, the 𝑁 checks at Line 7 in Figure 8b are combined into
one check 𝐶𝐼 (𝑥, 𝑥 + 4𝑁). For unbounded loops, GiantSan
employs the history caching discussed in Section 4.3.

4.5 Implementation
GiantSan is built upon the infrastructure of ASan [34] in
the LLVM Project. There are two components in the LLVM
project related to memory sanitization: 1) a compilation pass
that inserts runtime checks and 2) a library providing the
runtime environment. Specifically, GiantSan modifies the

9

framework in two aspects: the shadow memory poisoning
to build folded segments and the detection logic to construct
operation-level protection.
Shadow Poisoning. GiantSan changes the way ASan
poisons the shadow memory to build the folded segment
summary. Specifically, instead of only marking the allocated
region addressable (e.g., filling the shadowmemorywith zero
values), GiantSan sets the folding degrees in the shadow lo-
cations of the allocated region. The other operations, e.g., red-
zone setting and memory unpoisoning, remain unchanged.
The instrumentation is implemented on top of the ASan in-
strumentation pass. The compilation front end controls the
location of the pass in the compilation pipeline. By default,
this pass is placed at the end of the optimization pipeline.
Runtime Checking. GiantSan changes the logic of run-
time checks, prompting the instruction-level protection to
the operation-level protection. ASan adds runtime protection
in two ways. First, ASan employs an instrumentation pass to
add runtime checks during the compilation; we modify this
pass to replace ASan’s runtime protection with GiantSan’s
operation-level protection. Second, ASan provides a runtime
guardian function invoked before calling standard functions
(e.g., strcpy). The guardian function checks contiguous re-
gions in linear time, and we modify its implementation into
GiantSan’s constant time check.
Other implementation aspects of GiantSan, including

shadow memory construction, shadow memory unpoison-
ing after object deallocation, redzone padding, and memory
quarantine, are the same as the ones of ASan. Notably, the
multi-thread guarantee of GiantSan is the same as ASan,
i.e., thread-local caches are utilized to avoid locking on every
call of the malloc and free functions.

5 Evaluation
We experimentally evaluate GiantSan on three questions:

• RQ1: Can GiantSan reduce runtime overhead?
• RQ2: What are the impacts of each optimization?
• RQ3: Can GiantSan effectively detect real bugs?

We evaluate the speed of GiantSan on the latest version
of the industry-standard benchmark suite, SPECCPU2017 [38]
(RQ 1), and conduct an ablation study to evaluate the impact
of different optimizations employed by GiantSan with the
same benchmark (RQ 2). We then use Juliet Test Suite [32],
Magma Benchmark [20], and the Linux Flaw Project [8], the
widely used vulnerability databases, to evaluate GiantSan’s
detection ability (RQ 3).
Configuration. GiantSan is built on the LLVM-12, and
the experiments are conducted on a workstation with Intel(R)
Xeon(R) CPU E5-2698 v3 @ 2.30GHz CPU, 128G memory
(OS: ubuntu 18.04, Kernel version: 4.15.0-117-generic).

As for the sanitizer configuration, we use the default set-
tings listed in the ASan documentation [14] for all ASan-
based implementations: ASan [34], ASan-- [34], and our

tool GiantSan, except setting halt_on_error=false to pre-
vent early termination of the evaluation due to the widely-
reported memory errors existing in the SPEC benchmark.

5.1 Performance Study
Setting. We use the latest version of the industry-standard
CPU-intensive benchmark suite, SPEC CPU2017 [38], to eval-
uate the performance improvement of GiantSan thoroughly.
This benchmark consists of two testing modes: speed test
and rate test. The speed test runs one copy of the target pro-
gram to evaluate the execution time under the intensive CPU
computation environment. The rate test runs multiple con-
current programs simultaneously to evaluate the throughput
and performance in multi-threaded environments.
Not all programs in the benchmark are selected due to

compilation issues (e.g., requiring Fortran instead of C/C++).
We test projects on which at least one sanitizer can work
and choose the ref workloads for all projects.
We choose ASan [34] (the most widely adopted location-

based sanitizers) and ASan-- [42] (the state-of-the-art re-
dundant check eliminating solution based on static analy-
sis) as the baseline of location-based methods. We plan to
use BBC [2] as the baseline of rounded-up allocation size
methods, but it is not publicly available. Instead, we choose
LFP [9, 11], an improved version of BBC with more variety
of allocation sizes for object allocation.
Results. The overall performance is shown in Table 2. LFP
fails to build four projects perlbench, gcc, parest, and imagick.
On average, GiantSan introduces 46.04% execution over-
head on the native execution, with 59.10%, 38.52%, and 25.45%
improvements over ASan, ASan--, and LFP, respectively. Gi-
antSan outperforms ASan and ASan-- on all projects and is
only slower than LFP on 5 out of the 24 projects. The result
shows GiantSan has the best average performance, indicat-
ing the effectiveness of the new shadow encoding with the
segment folding algorithm.

5.2 Ablation Study
This section breaks down the contributions of the two op-
timizations introduced in Section 4.2 and Section 4.3: large
region checks help eliminate unnecessary checks, and his-
tory caching reduces unnecessary metadata loading.

Figure 10 demonstrates the ratio of optimized check codes
inGiantSan by our optimizations. On average, 52.56% of the
checks are optimized (30.76% eliminated and 21.80% cached).
In the projects mcf, namd, and lbm, more than 80% of the
checks introduced by ASan are eliminated or cached. Most of
the checks in these projects are within simple loops and struc-
ture accesses with constant offsets, which our optimizations
can efficiently handle. The remaining unoptimized codes
include the ones that employ the fast check only and those
that require the full check (i.e., fast check + slow check).
GiantSan can remove some slow checks because memory
regions of specific constant sizes (e.g., a power of 2) do not

10

Table 2. Runtime Overhead (seconds). 𝑅 is the ratio compared to the native execution (RE: Runtime Error, CE: Compile
Error). CacheOnly is the GiantSan version with history caching optimization only, and EliminationOnly is the one with check
elimination only. The redzone sizes for location-based methods (GiantSan, ASan, and ASan--) are the default value (16 bytes).

Performance Study Ablation Study

Programs Native GiantSan 𝑅 ASan 𝑅 ASan-- 𝑅 LFP 𝑅 CacheOnly EliminationOnly

500.perlbench_r 358 718 200.56% 822 229.61% 780 217.88% CE - 219.83% 221.23%
502.gcc_r 256 714 278.91% 847 330.86% 729 284.77% CE - 296.88% 284.77%
505.mcf_r 399 510 127.82% 667 167.17% 551 138.10% 602 150.88% 148.87% 142.11%
508.namd_r 295 317 107.46% 665 225.42% 479 162.37% 675 228.81% 194.92% 173.90%
510.parest_r 430 585 136.05% 1314 305.58% 886 206.05% CE - 218.37% 174.19%
511.povray_r 426 1068 250.70% 1604 376.53% 1235 289.91% 1227 288.03% 262.68% 277.23%
519.lbm_r 275 278 101.09% 431 156.73% 347 126.18% 554 201.45% 126.55% 124.36%
520.omnetpp_r 343 675 196.79% 1010 294.46% 872 254.23% 532 155.10% 232.36% 238.19%
523.xalancbmk_r 408 560 137.25% 739 181.13% 600 147.06% 418 102.45% 150.25% 150.98%
531.deepsjeng_r 289 408 141.18% 587 203.11% 442 152.94% 595 205.88% 173.36% 175.43%
538.imagick_r 499 681 136.47% 930 186.37% 863 172.95% CE - 140.68% 138.28%
541.leela_r 456 664 145.61% 933 204.61% 808 177.19% 906 198.68% 171.05% 171.49%
557.xz_r 362 415 114.64% 554 153.04% 488 134.81% 574 158.56% 187.29% 149.72%

600.perlbench_s 349 722 206.88% 1113 318.91% 806 230.95% CE - 236.10% 235.53%
602.gcc_s 476 604 126.89% 1341 281.72% 729 153.15% RE - 135.08% 128.15%
605.mcf_s 788 1062 134.77% 1276 161.93% 1205 152.92% 1113 141.24% 143.53% 142.51%
619.lbm_s 551 582 105.63% 676 122.69% 608 110.34% 535 97.10% 131.94% 133.03%
620.omnetpp_s 323 686 212.38% 1042 322.60% 871 269.66% 518 160.37% 243.03% 251.70%
623.xalancbmk_s 396 536 135.35% 714 180.30% 618 156.06% 417 105.30% 152.78% 156.06%
631.deepsjeng_s 347 498 143.52% 750 216.14% 540 155.62% 705 203.17% 178.10% 177.23%
638.imagick_s 2119 2635 124.35% 3751 177.02% 4271 201.56% 3604 170.08% 123.78% 116.61%
641.leela_s 452 669 148.01% 1041 230.31% 816 180.53% 904 200.00% 173.01% 171.02%
644.nab_s 1198 1355 113.11% 1915 159.85% 1480 123.54% 1464 122.20% 139.73% 138.48%
657.xz_s 871 1045 119.98% 1323 151.89% 1342 154.08% 1240 142.37% 165.56% 152.35%

Geometric Means. 146.04% 212.58% 174.89% 161.76% 175.63% 170.24%

60
0
60
2
60
5
61
9
62
0
62
3
63
1
63
8
64
1
64
4
65
7
50
0
50
2
50
5
50
8
51
0
51
1
51
9
52
0
52
3
53
1
53
8
54
1
55
7

0.00

0.25

0.50

0.75

1.00

FullCheck FastOnly Cached Eliminated

Figure 10. The proportion of memory instructions handled
by different optimizations in GiantSan with ASan as the
baseline. The x-labels are the project IDs. Eliminated are
codes removed due to the check merging, and Cached are
the ones optimized by the caching. FastOnly are the codes
where the fast check suffices, and FullCheck are the ones that
require both fast check and slow check.

require the slow check to tackle the corner cases outside
the fast check’s scope. The data shows that 49.22% of the
remaining unoptimized tasks only use fast checks. The result
indicates that the optimizations significantly reduce runtime
checks and metadata loadings to help GiantSan gain high

efficiency, and the fast check suffices to cover the majority
of protection tasks.
The ablation study column in Table 2 shows the run-

time overhead of GiantSan with solely caching enabled
and check elimination enabled, respectively. On average,
compared to ASan, GiantSan-CacheOnly and GiantSan-
EliminationOnly show 32.82% and 37.61% improvements,
respectively. Meanwhile, with either optimization enabled,
GiantSan has comparable efficiency to ASan-- and LFP
with about 70% overhead, and combining both optimizations
achieves the best performance among all test configurations.
GiantSan is faster than ASan because it supports operation-
level protection with constant time region checks and history
caching. Though ASan-- also uses static analysis to reduce
redundant checks (it has a similar efficiency with GiantSan-
Elimination-Only), it does not support the history cache that
can further reduce runtime overhead. GiantSan is faster
than LFP because LFP has to use extra instructions to simu-
late the stack due to the incomplete stack protection caused
by the high memory alignment requirement. This result
shows that both optimizations in GiantSan have signifi-
cantly contributed to reducing the number of checks, and
the fast check covers most of the memory protection tasks,
allowing us to achieve a notable performance improvement.

11

Table 3. Detection capability on the Juliet Test Suite. All test
cases have two versions: buggy and non-buggy versions. All
tested tools have no false-positive issues under the C/C++
standard and pass all the non-buggy tests. Therefore, only
the results for the buggy versions are presented to illustrate
the false-negative issue.

CWE ID & Type GiantSan ASan ASan-- LFP Total

121: Stack Buffer Overflow 1435 1435 1435 49 1439
122: Heap Buffer Overflow 1504 1504 1504 4 1504
124: Buffer Underwrite 767 767 767 767 767
126: Buffer Overread 441 441 441 352 449
127: Buffer Underread 916 916 916 916 916
416: Use After Free 393 393 393 393 393
476: NULL Pointer Dereference 288 288 288 288 288
761: Free Pointer Not at Start of Buffer 192 192 192 192 192

Total 5063 5063 5063 2088 5075

5.3 Detectability Study
On top of the performance improvement, we also evaluate
the practicalness of GiantSan in detecting memory errors.
Setting. We evaluate the bug detection ability on Juliet
Test Suite (version 1.3) [32], Magma [20], and Linux Flaw
Project [8], which are error collections widely used to evalu-
ate the effectiveness of software assurance tools.
Juliet Test Suite contains cases that wait for an external

signal (e.g., sockets), and some test cases include a random-
ized version (triggered with probability). We remove these
cases to avoid infinitely waiting and non-deterministic re-
sults. Linux Flaw Project contains CVEs related to real-world
programs, and we pick the memory-related ones, includ-
ing 28 vulnerabilities from 8 programs written in C/C++.
Magma [20] provides 58,969 test cases collected from its
fuzzing campaign. We evaluate ASan, ASan-- and GiantSan
onMagma to examine the effectiveness of GiantSan’s anchor-
based enhancement.
Results. Table 3 and Table 4 show the results on Juliet Test
Suite and Linux Flaw Project, respectively. GiantSan, ASan,
and ASan-- have the same results in all cases, while LFP has
a significant number of false negatives in both benchmarks.
LFP hasmany false negatives because it allocates objects with
more spaces than the program requires, similar to BBC [2]
discussed in Section 2.1. The cases missed by GiantSan,
ASan, and ASan-- are potential overflow errors caused by
uninitialized values. However, the uninitialized values loaded
do not really trigger an overflow; thus, these tools do not
generate bug reports since no overflow occurs.

For the redzone setting test, we evaluate GiantSan, ASan,
and ASan-- on Magma, and the result is listed in Table 5. As
we can see, GiantSan and ASan perform similarly in most
projects. However, for large-scale project PHP, GiantSan
reports 463 more cases than ASan and ASan-- (redzone=16)
and 57 more cases than ASan and ASan-- (redzone=512).
These false negatives are the POCs for CVE-2018-14883 and
are caused by the small redzone size. The result supports our

Table 4.Detection capability for CVEs in Linux Flaw Project.

Program CVE ID GiantSan ASan ASan-- LFP

libzip CVE-2017-12858 ✓ ✓ ✓

autotrace
CVE-2017-9164 ✓ ✓ ✓ ✓
CVE-2017-9165 ✓ ✓ ✓
CVE-2017-9166∼9173 ✓ ✓ ✓ ✓

imageworsener CVE-2017-9204∼9207 ✓ ✓ ✓ ✓
lame CVE-2015-9101 ✓ ✓ ✓ ✓
zziplib CVE-2017-5976∼5977 ✓ ✓ ✓ ✓

libtiff CVE-2016-10270∼10271 ✓ ✓ ✓ ✓
CVE-2016-10095 ✓ ✓ ✓ ✓

potrace CVE-2017-7263 ✓ ✓ ✓ ✓

mp3gain CVE-2017-14407∼14408 ✓ ✓ ✓ ✓
CVE-2017-14409 ✓ ✓ ✓

Table 5. Detection capability in real-world projects from
Magma Test Suite. 𝑟𝑧 is short for redzone.

Project (LoC) ASan--
(rz=16)

ASan--
(rz=512)

ASan
(rz=16)

ASan
(rz=512)

GiantSan
(rz=16) Total

php (1.3M) 1556 1962 1556 1962 2019 3072
libpng (86K) 1881 1881 1881 1881 1881 1881
libtiff (91K) 9858 9858 9858 9858 9858 9858
libxml2 (284K) 30566 30566 30566 30566 30566 30574
openssl (535K) 46 46 46 46 46 1509
sqlite3 (367K) 1528 1528 1528 1528 1528 1528
poppler (43K) 10201 10201 10201 10201 10201 10547

conclusion in Section 4.4.1: insufficient redzone size leads to a
false negative because of redzone bypassing, and GiantSan
solves this with anchor-based enhancement.

5.4 Limitation
Because GiantSan only provides a single-sided summary,
i.e., it summarizes segments from lower addresses to higher
addresses, GiantSan may not effectively safeguard lower
addresses given only higher addresses, causing potential
efficiency deterioration in reverse traversals with unbounded
loops when anchor-based enhancement is enabled.
To study this potential limitation, we conducted an addi-

tional study on Perlbench, which is a project in the SPEC
CPU2017 we used in Section 5.1. It is a program interpreter
that intensively iterates the input buffer and contains differ-
ent buffer iteration patterns, e.g., forward / reverse / random
traversals. We evaluated the execution time to complete a
traversal of the input buffer to compare the performance of
GiantSan’s history caching and ASan in different buffer
traversal patterns. Each run is repeated 100 times to reduce
variations, and the geometric mean is presented.

The results in Figure 11 show that GiantSan is 1.48x and
1.07x faster than ASan in random and forward traversals, re-
spectively. However, due to the extra instructions to perform
anchor-enhanced checks, GiantSan is 1.39x slower than
ASan in reverse traversals. The reason is that GiantSan has
one-sided complexity guarantees with history caching, i.e.,
quasi-bound converges to the upper bound of the allocated

12

0 5 10 15
Buffer Sizes (KB)

0

20

40

60

Ti
m

e
(m

s)

Native
GiantSan
ASan

(a) Forward Traversal: iterate over the buffer from
the lowest address to the highest address

0 5 10 15
Buffer Sizes (KB)

0

20

40

60

Ti
m

e
(m

s)

Native
GiantSan
ASan

(b) Random Traversal: iterate over the buffer in
random order

0 5 10 15
Buffer Sizes (KB)

0

20

40

60

80

Ti
m

e
(m

s)

Native
GiantSan
ASan

(c) Reverse Traversal: iterate over the buffer from
the highest address to the lowest address

Figure 11. The time cost of GiantSan and ASan in three buffer traversal patterns: Forward, Random, and Reverse. The
baseline Native is the execution time without sanitization.

region in ⌈log2 𝑛
8 ⌉ time; however, it does not provide time

guarantees for the lower bound. Therefore, GiantSan is
able to save time by predicting the addressability of higher
addresses from lower addresses, but not vice versa.
The experimental data empirically evidence the perfor-

mance difference of our approach in handling different tra-
versal patterns, which is consistent with our theoretical jus-
tification. Fortunately, the number of reverse traversals in
real-world programs is relatively limited. For example, in
the real-world programs collected by the SPEC CPU2017,
only 0.39% of the buffer traversals are in reverse order. Past
studies [15, 22] show that the impact of underflow is com-
paratively less severe than overflow. Furthermore, the SCEV
optimization could eliminate the runtime checks by inferring
the loop bounds, if possible.

For programs that heavily use reverse traversals, several al-
ternatives can mitigate the efficiency deterioration. One is to
remove the anchor-based enhancement in underflow detec-
tion so that GiantSan’s detection degrades to ASan’s mode
(i.e., only checking the location of the access and ignoring
the anchor); however, this would eliminate the superiority of
GiantSan over ASan in terms of underflow detection accu-
racy. The second solution is to locate the lower bound before
buffer reverse traversals by enumerating the folding degrees
and checking whether corresponding folded segments exist.

Also, thoughGiantSan improves the efficiency of location-
based methods, it still shares some common limitations with
existing works.
Sub-object Overflow Insensitivity: GiantSan detects
memory accesses outside objects’ allocated regions but can-
not detect memory safety violations related to sub-objects,
which is an open question in the existing literature. The best
practices in detecting sub-object overflow are pointer-based
methods like Softbound+CETS [29, 30] and EffctiveSan [10].
However, they all suffer from high runtime overhead and re-
quire precise type information, which might not be available
in real-world programs.

Quarantine Bypassing: GiantSan detects temporal errors
based on memory quarantine, but the memory quarantine
can be bypassed with a small probability. It is a common
issue for memory quarantine-based solutions [34, 41, 42]. In
practice, the probability of bypassing the quarantine queue
is low, and few related false negative reports exist.

6 Related Work
Researchers have proposed various dynamic error detectors.
We further discuss existing works targeting memory errors.
Token Authentication. HWASAN [35] uses address tag-
ging to replace the redzone with token authentication. A ran-
dom token is attached to pointers with the Top-Byte-Ignore
hardware support, and the token is stored in the shadow
memory for memory regions. The token mismatch between
pointers and memory regions results in memory errors. Like
GiantSan’s anchor-based enhancement, it mitigates the
redzone dilemma. Specifically, HWASAN solves the prob-
lem that traditional location-based methods are unable to
distinguish between different allocated memory regions by
assigning an 8-bit identifier to each region. It propagates the
identifier in a pointer-based manner and removes the need
for redzones with the token-matching model.
However, it does not improve the detection efficiency of

the location-based methods, where a single check only safe-
guards a small region (e.g., 16 bytes). Therefore, it suffers
from the low protection density issue that requires excessive
runtime checks to safeguard a large region, decreasing its ef-
ficiency. This efficiency issue is GiantSan’s key motivation.
Redzone Enhancement. Location-based solutions divide
the memory into separated regions using redzones to detect
sophisticated bugs. Some methods that focus on redzone
enhancement aim to reduce runtime overhead with redzone
poisoning or improve accuracy with adaptive redzone sizes.
For example, in-band redzone methods [16, 18] fill the

redzone with a random pattern and compare the loaded data
with that pattern. If they are different, the memory access
is not in the redzone and is safe. These methods reduce

13

dedicated data structure inquiries (e.g., shadow memory),
thus promoting memory locality. However, this method pro-
tects only a small region with one check and faces the same
low protection density issue as other location-based meth-
ods. Similarly, it suffers from small redzone size, e.g., Float-
Zone [16] cannot detect CVE-2017-7263with 16-byte in-band
redzones. These two issues are what GiantSan addresses.

Some approaches reduce the impact of redzone sizes with
adaptive settings. LBC [18] selects different redzones based
on the allocated region sizes. MEDS [17] spreads the objects
evenly in the address space to increase the distance between
objects as much as possible. To minimize memory consump-
tion, MEDS uses page aliasing to allowmultiple virtual pages
to share the same physical page.
GiantSan is compatible with all these redzone enhance-

ment techniques because GiantSan does not impose any
extra requirements on redzone settings and the contents
in the redzone areas. GiantSan only modifies the shadow
memory encoding for non-redzone areas and reduces the
dependency on redzone size by modifying the runtime check
logic with the selected anchors.
Pointer Tracking. Pointer-based techniques provide a
memory safety guarantee by tracking the lifetime of pointers.
As discussed in Section 2.1, pointer-based methods require
the pointer type information to propagate tags and avoid tag
misuse. The complete memory safety guarantee in pointer-
based methods requires instrumenting the source codes of
the whole runtime environment, which is usually expensive
and unavailable and thus makes these methods less portable.

Traditional pointer-based solutions [4, 29, 30] require ex-
tra instructions to propagate metadata (e.g., bound) along
pointer arithmetics; in contrast, location-based solutions
only check pointer dereference operations, which is much
fewer than pointer arithmetics. The propagation is the pri-
mary source of the pointer-based solutions’ runtime over-
head [37]. Pointer tagging is a popular solution tomitigate the
overhead issue in propagation.With the proliferation of large
bit-width systems (e.g., 64-bit), a single pointer structure can
now represent far larger address space than a program needs,
resulting in some upper spare bits in pointers. Consequently,
many pointer-based methods [15, 22, 23, 25] propagate meta-
data with the upper spare bits so that the metadata associated
with pointers can be propagated automatically.

Though pointer tagging solves the efficiency problem of
data propagation, it faces a new problem related to the bit
width: the upper spare bits are not enough to hold the meta-
data. One solution is reducing the address space. For example,
Delta Pointers [22] and SGXBound [23] use 32-bit address
space in a 64-bit platform and record the metadata with
the other 32 bits. The narrowing down of the address space
makes them less suitable for programs with large memory
footprints. Delta Pointers mitigate this issue by providing a
trade-off between the maximum object size and the address
space size. Another solution [25] is to store the metadata

in a key-value database, and the pointer tag only serves as
the key. Compared with the shadow memory inquiry used
in location-based solutions, the key-value store takes more
time to retrieve the metadata.
GiantSan also suffers from a bit-width limitation, i.e., a

single shadow byte can only hold 256 different states. Gi-
antSan solves this limitation with the on-demand inquiry.
The segment folding technique in GiantSan can be consid-
ered as a key-value store that takes logarithmic time to index
an object’s bound. However, one of our key observations is
that the program does not always traverse the entire allo-
cated region, and in most cases, we only need to safeguard a
subregion. This observation allows us to reduce the number
of queries by looking up folding degrees on demand.
The spirit of on-demand inquiry is orthogonal to the

pointer-based solutions and could mitigate the bit width
requirement faced by the pointer tagging technique. Inte-
grating the on-demand inquiry spirit into pointer-based solu-
tions is a future research direction we are going to address.
Rounded-Up Bound. Works like LFP [9, 11] and BBC [2]
obtain the object bound by directly fetching the bound from
shadow memory. However, to enable compact shadow mem-
ory, they only support a limited set of allocation sizes to
reduce the bit width for recording the bound. As a result,
they overapproximate the object sizes required by the pro-
grams, leading to significant false negative issues.
BBC [2] uses the power-of-two strategy similar to Gi-

antSan from a particular perspective. However, BBC uses
the power-of-two spirit to approximate the real object bound,
while GiantSan uses the power-of-two spirit to build precise
summaries of addressable regions. Therefore, GiantSan is
more precise than BBC. LFP enhances BBC by introducing
more variety of allocation sizes but still has numerous false
negatives, as shown in our experiments.

7 Conclusions
We present GiantSan, a location-based sanitizer optimizing
runtime checks with segment folding. GiantSan summa-
rizes segments without non-addressable bytes to increase
protection density. It largely reduces 59.10% and 38.52% of
the overhead introduced by ASan and ASan-- on the SPEC
CPU 2017 benchmark, respectively. Furthermore, the evalua-
tion on the PHP project demonstrates that GiantSan can
minimize the dependence on the redzone, thus resulting in a
more effective detection ability than ASan and ASan--.

8 Acknowledgements
We thank the anonymous reviewers for their valuable com-
ments and opinions for improving this work. This work is
supported by the ITS/440/18FP grant from the Hong Kong
Innovation and Technology Commission and research grants
from Huawei, Microsoft, and TCL. Heqing Huang is the cor-
responding author.

14

References
[1] Sam Ainsworth and Timothy M. Jones. MarkUs: Drop-in use-after-

free prevention for low-level languages. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 578–591, 2020. https://doi.org/10.1109/
SP40000.2020.00058.

[2] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.
Baggy Bounds Checking: An efficient and backwards-compatible de-
fense against out-of-bounds errors. In Proceedings of the 18th Confer-
ence on USENIX Security Symposium, SSYM’09, page 51–66, USA, 2009.
USENIX Association. https://www.usenix.org/legacy/events/sec09/
tech/full_papers/akritidis.pdf.

[3] Android. Hwasan, asan and kasan. https://source.android.com/docs/
security/test/memory-safety/hwasan-asan-kasan.

[4] Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer. Cup:
Comprehensive user-space protection for c/c++. In Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
ASIACCS ’18, page 381–392, New York, NY, USA, 2018. Association
for Computing Machinery. https://doi.org/10.1145/3196494.3196540.

[5] Microsoft Corporation. How to use pageheap.exe in windows xp, win-
dows 2000, and windows server 2003. 2000. https://mskb.pkisolutions.
com/kb/286470.

[6] C. Cowan. Software security for open-source systems. IEEE Secu-
rity Privacy, 1(1):38–45, 2003. https://doi.org/10.1109/MSECP.2003.
1176994.

[7] Thurston H.Y. Dang, Petros Maniatis, and David Wagner. Oscar:
A practical Page-Permissions-Based scheme for thwarting dangling
pointers. In 26th USENIX Security Symposium (USENIX Security
17), pages 815–832, Vancouver, BC, August 2017. USENIX Associa-
tion. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/dang.

[8] Dongliang Mu. Linux flaw project. https://github.com/mudongliang/
LinuxFlaw, 2017.

[9] Gregory J. Duck and Roland H. C. Yap. Heap bounds protection with
low fat pointers. In Proceedings of the 25th International Conference on
Compiler Construction, CC 2016, page 132–142, New York, NY, USA,
2016. Association for Computing Machinery. https://doi.org/10.1145/
2892208.2892212.

[10] Gregory J. Duck and Roland H. C. Yap. Effectivesan: Type and memory
error detection using dynamically typed c/c++. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2018, page 181–195, New York, NY, USA,
2018. Association for Computing Machinery. https://doi.org/10.1145/
3192366.3192388.

[11] Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. Stack bounds
protection with low fat pointers. 01 2017. https://doi.org/10.14722/
ndss.2017.23287.

[12] Reza Mirzazade farkhani, Mansour Ahmadi, and Long Lu. PTAuth:
Temporal memory safety via robust points-to authentication. In
30th USENIX Security Symposium (USENIX Security 21), pages 1037–
1054. USENIX Association, August 2021. https://www.usenix.org/
conference/usenixsecurity21/presentation/mirzazade.

[13] GCC. The gnu compiler collection. https://gcc.gnu.org/.
[14] Google. Addresssanitizier wiki. https://github.com/google/sanitizers/

wiki/AddressSanitizerFlags.
[15] Amogha Udupa Shankaranarayana Gopal, Raveendra Soori, Michael

Ferdman, and Dongyoon Lee. TAILCHECK: A lightweight heap over-
flow detection mechanism with page protection and tagged pointers.
In 17th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 23), pages 535–552, Boston, MA, July 2023. USENIXAssoci-
ation. https://www.usenix.org/conference/osdi23/presentation/gopal.

[16] Floris Gorter, Enrico Barberis, Raphael Isemann, Erik van der Kouwe,
Cristiano Giuffrida, and Herbert Bos. FloatZone: Accelerating memory
error detection using the floating point unit. In 32nd USENIX Security

Symposium (USENIX Security 23), pages 805–822, Anaheim, CA, Au-
gust 2023. USENIX Association. https://www.usenix.org/conference/
usenixsecurity23/presentation/gorter.

[17] Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song,
and Insik Shin. Enhancing memory error detection for large-scale
applications and fuzz testing. 01 2018. https://doi.org/10.14722/ndss.
2018.23312.

[18] Niranjan Hasabnis, Ashish Misra, and R. Sekar. Light-weight bounds
checking. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, page 135–144, New York, NY,
USA, 2012. Association for Computing Machinery. https://doi.org/10.
1145/2259016.2259034.

[19] Reed Hastings. Purify: Fast detection of memory leaks and access
errors. In Proc. 1992 Winter USENIX Conference, pages 125–136, 1992.
https://web.stanford.edu/class/cs343/resources/purify.pdf.

[20] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A
ground-truth fuzzing benchmark. Proc. ACM Meas. Anal. Comput.
Syst., 4(3), jun 2021. https://doi.org/10.1145/3428334.

[21] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in c programs. In Automated
and Algorithmic Debugging, 1997. https://www.doc.ic.ac.uk/~phjk/
Publications/BoundsCheckingForC.pdf.

[22] Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and
Cristiano Giuffrida. Delta Pointers: Buffer overflow checks without the
checks. In Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18, New York, NY, USA, 2018. Association for Computing Machinery.
https://doi.org/10.1145/3190508.3190553.

[23] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach,
Pramod Bhatotia, Pascal Felber, and Christof Fetzer. Sgxbounds: Mem-
ory safety for shielded execution. In Proceedings of the Twelfth Eu-
ropean Conference on Computer Systems, EuroSys ’17, page 205–221,
New York, NY, USA, 2017. Association for Computing Machinery.
https://doi.org/10.1145/3064176.3064192.

[24] Chris Arthur Lattner. LLVM: An infrastructure for multi-stage opti-
mization. 2002. http://llvm.org.

[25] Yuan Li, Wende Tan, Zhizheng Lv, Songtao Yang, Mathias Payer, Ying
Liu, and Chao Zhang. Pacmem: Enforcing spatial and temporal mem-
ory safety via arm pointer authentication. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22, page 1901–1915, New York, NY, USA, 2022. Association for
Computing Machinery. https://doi.org/10.1145/3548606.3560598.

[26] Linux Kernel. The kernel address sanitizer. https://www.kernel.org/
doc/html/v4.14/dev-tools/kasan.html.

[27] David Litchfield. Buffer underruns, dep, aslr and improv-
ing the exploitation prevention mechanisms (xpms) on
the windows platform. Next Generation Security Software,
2005. https://research.nccgroup.com/wp-content/uploads/
episerver-images/assets/854f87540884465e8c6930b1b2fabf9b/
854f87540884465e8c6930b1b2fabf9b.pdf.

[28] LLVM. Scalar evolution and loop optimization. https://llvm.org/
devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf.

[29] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. SoftBound: Highly compatible and complete spatial mem-
ory safety for c. In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’09, page
245–258, New York, NY, USA, 2009. Association for Computing Ma-
chinery. https://doi.org/10.1145/1542476.1542504.

[30] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Cets: Compiler enforced temporal safety for c. SIGPLAN
Not., 45(8):31–40, jun 2010. https://doi.org/10.1145/1837855.1806657.

[31] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and

15

https://doi.org/10.1109/SP40000.2020.00058
https://doi.org/10.1109/SP40000.2020.00058
https://www.usenix.org/legacy/events/sec09/tech/full_papers/akritidis.pdf
https://www.usenix.org/legacy/events/sec09/tech/full_papers/akritidis.pdf
https://source.android.com/docs/security/test/memory-safety/hwasan-asan-kasan
https://source.android.com/docs/security/test/memory-safety/hwasan-asan-kasan
https://doi.org/10.1145/3196494.3196540
https://mskb.pkisolutions.com/kb/286470
https://mskb.pkisolutions.com/kb/286470
https://doi.org/10.1109/MSECP.2003.1176994
https://doi.org/10.1109/MSECP.2003.1176994
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/dang
https://github.com/mudongliang/LinuxFlaw
https://github.com/mudongliang/LinuxFlaw
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.1145/3192366.3192388
https://doi.org/10.14722/ndss.2017.23287
https://doi.org/10.14722/ndss.2017.23287
https://www.usenix.org/conference/usenixsecurity21/presentation/mirzazade
https://www.usenix.org/conference/usenixsecurity21/presentation/mirzazade
https://gcc.gnu.org/
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags
https://www.usenix.org/conference/osdi23/presentation/gopal
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://www.usenix.org/conference/usenixsecurity23/presentation/gorter
https://doi.org/10.14722/ndss.2018.23312
https://doi.org/10.14722/ndss.2018.23312
https://doi.org/10.1145/2259016.2259034
https://doi.org/10.1145/2259016.2259034
https://web.stanford.edu/class/cs343/resources/purify.pdf
https://doi.org/10.1145/3428334
https://www.doc.ic.ac.uk/~phjk/Publications/BoundsCheckingForC.pdf
https://www.doc.ic.ac.uk/~phjk/Publications/BoundsCheckingForC.pdf
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.1145/3064176.3064192
http://llvm.org
https://doi.org/10.1145/3548606.3560598
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://research.nccgroup.com/wp-content/uploads/episerver-images/assets/854f87540884465e8c6930b1b2fabf9b/854f87540884465e8c6930b1b2fabf9b.pdf
https://research.nccgroup.com/wp-content/uploads/episerver-images/assets/854f87540884465e8c6930b1b2fabf9b/854f87540884465e8c6930b1b2fabf9b.pdf
https://research.nccgroup.com/wp-content/uploads/episerver-images/assets/854f87540884465e8c6930b1b2fabf9b/854f87540884465e8c6930b1b2fabf9b.pdf
https://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf
https://llvm.org/devmtg/2009-10/ScalarEvolutionAndLoopOptimization.pdf
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1837855.1806657

Implementation, PLDI ’07, page 89–100, New York, NY, USA, 2007. As-
sociation for Computing Machinery. https://doi.org/10.1145/1250734.
1250746.

[32] NIST. Software assurance reference dataset. https://samate.nist.gov/
SARD/test-suites, 2017.

[33] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer over-
flow detector. In Network and Distributed System Security Symposium,
2004. https://www.ndss-symposium.org/ndss2004/practical-dynamic-
buffer-overflow-detector/.

[34] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: A fast address sanity checker. In
Proceedings of the 2012 USENIX Conference on Annual Technical Con-
ference, USENIX ATC’12, page 28, USA, 2012. USENIX Association.
https://dl.acm.org/doi/10.5555/2342821.2342849.

[35] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad
Tsyrklevich, and Dmitry Vyukov. Memory tagging and how it im-
proves c/c++ memory safety. arXiv preprint arXiv:1802.09517, 2018.
https://arxiv.org/abs/1802.09517.

[36] Julian Seward and Nicholas Nethercote. Using valgrind to detect unde-
fined value errors with Bit-Precision. In 2005 USENIX Annual Technical
Conference (USENIX ATC 05), Anaheim, CA, April 2005. USENIX
Association. https://www.usenix.org/conference/2005-usenix-
annual-technical-conference/using-valgrind-detect-undefined-
value-errors-bit.

[37] Dokyung Song, Julian Lettner, Prabhu Rajasekaran, Yeoul Na, Stijn
Volckaert, Per Larsen, and Michael Franz. Sok: Sanitizing for security.
In 2019 IEEE Symposium on Security and Privacy (SP), pages 1275–1295,
2019. https://doi.org/10.1109/SP.2019.00010.

[38] Standard Performance Evaluation Corporation. Spec cpu® 2017. https:
//www.spec.org/cpu2017/, 2022.

[39] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal
war in memory. In 2013 IEEE Symposium on Security and Privacy, pages
48–62, 2013. https://doi.org/10.1109/SP.2013.13.

[40] The 2022 CWE Top 25 Team. 2022 CWE Top 25 Most Dangerous
Software Weaknesses. https://cwe.mitre.org/top25/archive/2022/2022_
cwe_top25.html, 2022.

[41] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong
Su. SANRAZOR: Reducing redundant sanitizer checks in C/C++ pro-
grams. In 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 21), pages 479–494. USENIX Association, July
2021. https://www.usenix.org/conference/osdi21/presentation/zhang.

[42] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis, Nikos Trian-
dopoulos, and Jun Xu. Debloating address sanitizer. In 31st USENIX
Security Symposium (USENIX Security 22), pages 4345–4363, Boston,
MA, August 2022. USENIX Association. https://www.usenix.org/
conference/usenixsecurity22/presentation/zhang-yuchen.

16

https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://samate.nist.gov/SARD/test-suites
https://samate.nist.gov/SARD/test-suites
https://www.ndss-symposium.org/ndss2004/practical-dynamic-buffer-overflow-detector/
https://www.ndss-symposium.org/ndss2004/practical-dynamic-buffer-overflow-detector/
https://dl.acm.org/doi/10.5555/2342821.2342849
https://arxiv.org/abs/1802.09517
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/using-valgrind-detect-undefined-value-errors-bit
https://doi.org/10.1109/SP.2019.00010
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://doi.org/10.1109/SP.2013.13
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://www.usenix.org/conference/osdi21/presentation/zhang
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen
https://www.usenix.org/conference/usenixsecurity22/presentation/zhang-yuchen

	Abstract
	1 Introduction
	2 Technical Background
	2.1 Existing Solutions for Memory Safety
	2.2 Location-based checking with shadow memory
	2.3 Problems and Challenges

	3 GiantSan in a Nutshell
	4 Design
	4.1 Shadow Encoding in GiantSan
	4.2 Region Checking
	4.3 History Caching
	4.4 Check Instance Generation
	4.5 Implementation

	5 Evaluation
	5.1 Performance Study
	5.2 Ablation Study
	5.3 Detectability Study
	5.4 Limitation

	6 Related Work
	7 Conclusions
	8 Acknowledgements
	References

