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Abstract—Scheduling seeds, i.e., selecting a seed for mutation from a pool of candidates, significantly impacts the speed of a greybox
fuzzer to achieve a target coverage rate. Despite much progress in improving seed scheduling, existing work cannot escape from the
high-cost trap or the high-benefit trap: one line of approaches believe high cost implies high benefit and, thus, prefer the seeds that
explore infrequently-visited paths; the other line of approaches directly calculate the potential benefits, e.g., the number of blocks able
to cover, and prefer high-benefit seeds. Due to the ignorance of the impacts of either the cost or the benefits, they often trap fuzzers
into mutating the seeds without increasing coverage. This paper presents BELIEFFUZZ, which transforms fuzzing into a Monte Carlo
planning system with a upper confidence bound. The system allows us to dynamically compute both the benefits and the cost during
the fuzzing process. The experimental results demonstrate that, to achieve the same coverage, our approach is significant more
efficienct, with 2.12x-5.63x speedup and 1.18x-2.77x fewer executions needed, than the state of the art. Moreover, BELIEFFUZZ

detected 31 more previously-unseen bugs in real-world projects, with 18 CVEs assigned.

Index Terms—Fuzzing, Seed Prioritization, Power Scheduling, Monte Carlo Planning.
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1 INTRODUCTION

Greybox fuzzing has been proven to be one of the most
powerful vulnerability detection methods [1], [2], [4], [7],
[15], [25], [39]. With lightweight execution feedback, e.g.,
coverage, it preserves the test inputs that discover unseen
program behaviors, e.g., new coverage, as seeds to further
explore the target program. The seeds are prioritized and
mutated to generate new test inputs. One critical challenge
in this fuzzing procedure is finding an ideal prioritization
of these seeds so that we can achieve a high coverage
rate as soon as possible. To this end, existing efforts define
many metrics to calculate the potential of new coverage
for each seed. While these metrics have allowed for much
improvement, we observe that they do not well-balance
the cost and the benefits of scheduling a seed, thus easily
trapping a fuzzer into ineffective seed mutation.

Many existing works focus on mutating high-cost seeds,
e.g., assign higher potential to the seeds that explore paths
with lower execution frequency [7], [37], [39], [40], [41].
Their key observation is that the infrequently visited paths
have not been fully explored. Thus, mutating seeds of these
paths may find new program behaviors. However, the low
execution frequency of a covered path does not mean that
the path relates to uncovered code. Keeping mutating these
seeds may let a fuzzer stick at uninteresting paths without
any coverage achievement, which we refer to as the high-cost
trap. For example, in Figure 1, even though Seed 1 explores
a path with the lowest execution frequency, we may assign
higher potential to Seed 3 and Seed 4, because, compared
to Seed 1, they execute two paths much “closer” to the
uncovered blocks.1
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1. Closeness represents the potential to reach the specific program
points measured by a distance metric [6], [10], [25].

On the contrary, some other methods prefer mutating
high-benefit seeds that are close to the uncovered blocks
(e.g., Seed 3 and Seed 4 in Figure 1) [25], [33]. However,
being closer to uncovered blocks does not mean it is easy
to cover them. Thus, these approaches could let the fuzzer
stick at ultra-complex path conditions without finding much
coverage, which we refer to as the high-benefit trap. In the
example of Figure 1, since Seed 3 is closer to more uncovered
blocks (H, K, and L) than Seed 4, the fuzzer then focuses on
mutating Seed 3 and expects to cover these blocks. However,
the uncovered blocks, H, K, and L, are too difficult to cover
with an extremely small probability. Thus, keeping mutating
Seed 3 will consume many resources with few chances to
improve the coverage.

To avoid falling into such high-cost or high-benefit traps,
we advocate a new holistic model for greybox fuzzing to
balance the cost and the benefits of scheduling a seed. For
example, in Figure 1, we not only focus on mutating the
most promising seed, Seed 3, the path of which dominates
most uncovered blocks in the program, but also record the
cost of mutation conducted toward this path. If no coverage
is found, but unaffordable efforts have been made, even
though it has the highest potential benefit, we temporarily
give up this seed and switch to others, e.g., Seed 4. While
the example is simple, a key challenge to resolve is to
efficiently quantify the cost and the benefits of mutating a
seed, which are not static but frequently change when the
fuzzing procedure proceeds, the number of seeds increases,
and the blocks are gradually covered.

Our key insight in addressing the challenge is that bal-
ancing the cost and the benefits of scheduling a seed can
be solved by a Monte Carlo planning system with upper
confidence bound (MCUCB) [19]. MCUCB can provide an
optimal decision with a theoretical guarantee for a large
search process. Even though many existing approaches bor-
row only a few concepts from the conventional Monte Carlo
method [28], [37], [41], the adapted sampled probability for
approximating the potential of each seed is based on the
observed statistic, i.e., execution frequency, which cannot
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Figure 1: Motivating example. The figure illustrates a control
flow graph with covered and uncovered basic blocks. The
edge labels denote the probability of taking a branch. We
assume that we have obtained four seeds (Seed 1 to Seed 4)
during the fuzzing procedure.

model the benefits well. Instead, we leverage the strength of
MCUCB, which allows the potential of intermediate states
defined by the application scenario, to quantify both the
cost and the benefit for the seeds in fuzzing. Therefore, seed
prioritization considers the cost and the benefits simultane-
ously with a bounded coverage loss brought by not selecting
the ideal seed. Specifically, we adopt the intuition from the
cost-benefit analysis [22] to define the concept, “confidence”,
in MCUCB to dynamically measure whether this estimated
potential benefit is still worth exploring with a confidence
interval based on its cost. Furthermore, to improve the
ineffectiveness caused by imperfect information, we arm
our approach with a regret-based power scheduling method
to early stop mutating the seeds that cannot bring new
coverage as expected for other promising ones.

We have implemented our method as a greybox fuzzer
named BELIEFFUZZ on top of AFL [1] and compared it
to seven state-of-the-art coverage-based greybox fuzzers,
AFL, AFL++ [15], FairFuzz [24], AFLFast [7], EcoFuzz [39],
K-Scheduler [33], and Alphuzz [41]. The experimental re-
sults demonstrate a significant efficiency improvement,
with 212%-563% speedup and 1.18x-2.77x fewer executions
needed, over existing approaches to achieve the same cover-
age in a 24-hour experiment. Such efficiency improvement
also benefits the code coverage, which is 117%-255% higher
than the baselines. Moreover, BELIEFFUZZ detected 31 pre-
viously unseen bugs in real-world projects with 18 CVEs
assigned. BELIEFFUZZ is publicly available.2 Overall, this
paper makes three contributions:

• We propose a novel probabilistic model that eluci-
dates the weaknesses of existing works, showing the
potential loss compared to the optimal coverage.

• We propose a new seed prioritization mechanism to
improve the coverage of greybox fuzzing with less
time cost.

2. https://github.com/belieffuzz/belieffuzz artifacts

• We provide an effective power scheduling strategy
to avoid excessive energy allocation for seeds that
cannot achieve much coverage.

• We provide empirical evidence that BELIEFFUZZ is
more efficient and effective than the state-of-the-art
greybox fuzzers.

2 BACKGROUND AND MOTIVATION

This section discusses the problems behind existing meth-
ods (Section 2.1), explains the challenges (Section 2.2), illus-
trates the potential of Monte Carlo planning (Section 2.3),
and, finally, briefly demonstrates our approach (Section 2.4).

2.1 Existing Seed Scheduling Models
Seed scheduling aims to maximize the coverage outcomes
of a fuzzer by determining the potential of each seed.
Specifically, it needs to make two sub-decisions — seed
selection, which chooses the most promising seed from a
pool, and power scheduling, which decides the number of
mutations over this seed. The most widely used greybox
fuzzer, AFL [1], uses multiple metrics, e.g., the coverage dis-
covery and the execution time, to quantify the potential of
each seed. If an input produced by mutating a seed detects
a new path, AFL doubles the number of mutations allocated
for this seed. Even though these heuristics are lightweight
and have been proved useful occasionally, many existing
approaches have demonstrated their limitations and pro-
posed further optimizations [7], [37], [39]. To explain why
high cost/benefit traps happen in existing works, we first
discuss the intuition behind them, which are put into two
categories: cost-oriented and benefit-oriented approaches.
Cost-Oriented Models. A number of existing efforts use the
execution frequency of seed to calculate a transition prob-
ability, which estimates the cost of discovering unknown
seeds from the discovered ones. Mainly, there are three
closely related models: Markov chain [17], multi-armed
bandit [5] and Monte Carlo tree search [20].

The first one, proposed by AFLFast [7], regards the
fuzzing procedure as a stochastic searching process in the
Markov chain. A Markov chain is a stochastic process
with a sequence of states, X . Furthermore, it first proposes
the concept of transition probability, pij , that indicates the
probability of switching state Xi to state Xj at time t.
AFLFast defines the state space as the discovered paths
and their immediate neighbors, which are the paths that
can be directly found by mutating the existing seeds, and
defines the transition probability pij as the probability of
generating an input that executes the path j from the seed
that exercises the path i. AFLFast then selects the seed with
a higher expectation to detect a new state j and deduces
the energy allocated as 1/pij . However, it is impossible
to calculate such probabilities in practice. As a substitute,
AFLFast approximates the probability, pi∗, of transiting from
the path i to any other paths using its path execution
frequency, fi, as

pi∗ =
c

fi

where c is the score provided by the original AFL. This
formula encourages the fuzzer to explore paths with less ex-
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ecution frequency, which may lead to excessive exploration
of high-cost paths.

The second approach, EcoFuzz [39], transforms the
fuzzing procedure into a multi-armed bandit problem. The
multi-armed bandit problem aims to maximize the out-
comes from various choices (arms) with the benefits found
in a limited number of playouts. Specifically, EcoFuzz ap-
proximates the probability, pi∗, of transiting from the path
i, whose discovered index is also used for indicating the
increasing difficulties in finding new paths at later stages, to
any new paths as

pi∗ = 1− fi√
i

which, albeit different from AFLFast, still drives the fuzzer
to explore a path with less execution frequency, thus having
the same problem.

Furthermore, AFL-Hier [37] extends the multi-armed
bandit model with more fine-grained metrics to distinguish
the seeds. Their intuition is that the fine-grained metrics
could make the fuzzer select seeds with better diversity
to explore different parts of the program. Specifically, it
clusters the seeds into a multi-level tree by a set of gradually
sensitive coverage metrics, e.g., function, block, and edge. It
further defines the rareness, which is inverse proportion to
the execution frequency, f , in each metric, to measure the
score of each path i (in abbreviation) as

Score(i) ∝ 1

f
,

1

SelectionRatioi

where f is the averaged frequency that occurred in path i
measured by each metric, and the SelectionRatioi is the
selection frequency of the seed i. Even though the fine-
grained coverage metric is more precise than solely using
edge coverage, its basic intuition still directs fuzzing toward
those less frequently visited paths and eventually falls into
the high-cost trap.

Alphuzz [41] proposes to leverage the third model,
Monte Carlo tree search (MCTS), which derives from the
convention Monte Carlo method [28]. It forms the seed
pool as a tree based on the seed discovery relation and
represents the seed with the tree node. However, it still uses
the execution frequency to measure the importance of the
seeds. Specifically, it prefers the path of seed, i, exercising
the most branches, bunique, that have been detected solely
be the seed, i,

Score(i) ∝ |bunique|,
1

SelectionRatioi

where the SelectionRatioi is the selection frequency of seed
i. Nonetheless, this adaption cannot escape from the high-
cost trap since the potential benefit of a seed is still not taken
into consideration.

To sum up, even though existing studies propose various
inspiring models, they still rely on the execution frequency
to estimate the potential of each seed, which cannot escape
from the high-cost trap.

Benefit-Oriented Models. The other trend of existing work
is to utilize the potential benefit of each seed. Their intuition
is to measure the benefit of seed from its reachable but un-
covered part of the code with different predefined metrics.

For example, Savior [11] uses the number of reachable bugs
marked by the sanitizers as the prioritization standard. K-
Schedule [33] adapts the graph centrality to approximate
the number of reachable blocks for each seed. Cerebro [25]
proposes multiple factors such as the complexity of the
possible achievable coverage, to measure the benefit of the
seed S, by solving a multi-objective optimization problem:

max Benefit(S)

s.t. Benefit(S) =
∑
s∈S
O(M1,M2, . . . ,Mk)

where O(M1,M2, . . . ,Mk) is the objective function deter-
mined by various k metrics, Mi (i ∈ 1, . . . , k). Specifically,
Cerebro proposes several heuristics to concretize the objec-
tive functions, which can be divided into two categories.
First, it relies on the metrics used in AFL to measure
the potential of the executed path, which shares the same
intuition with AFL, i.e., the paths with less execution time
but higher coverage are preferred. Second, it proposes to
evaluate the potential achievable coverage as the benefit of
each seed, which is the number of reachable but uncovered
blocks of its executed paths. Cerebro then prefers to choose
the seed with a higher probability of covering more paths.

However, the models used in these benefit-oriented
methods, whose quality is highly dependent on the ro-
bustness of the given objective functions, cannot obtain
these precise objective functions for fuzzing, which is sim-
ilar to the transition probability. Although Cerebro and K-
Scheduler propose several metrics as an approximation, it is
infeasible to list all of them with theoretical formulas, i.e.,
the exact cost for achieving the coverage, and thus make the
selection fall into the high-benefit traps. Furthermore, even
though we can unconstrainedly add more metrics with man-
ual expertise, such an enormous number of objectives could
increase the burden of solving the optimization problem.

2.2 Challenges of Balancing the Cost and Benefit
Even though existing methods have the potential to select
the seed effectively, they still cannot escape from the high-
cost and the high-benefit traps simultaneously, which makes
fuzzer allocate excessive resources to those seeds that cannot
achieve much coverage. Specifically, we need to address the
following two challenges.
Challenge 1: Simultaneously Quantifying the Cost and the
Benefits. On the one hand, the models used in the cost-
oriented methods naturally cannot consider both factors at
the same time. Their approximation forms for the seed’s po-
tential only take one factor as input. Meanwhile, the multi-
armed bandit model cannot tackle the fuzzing scenario since
the number of the select targets (seed) is not fixed, thus,
violating the basic assumptions of its methodology. On the
other hand, even though the models used in the benefit-
oriented method can consider both factors, a proper objective
function for quantifying them still needs manual expertise
without a guarantee provided.

Even though existing efforts [37], [41] attempt to borrow
the concepts in the Monte Carlo method, i.e., Monte Carlo
tree search, they cannot escape from the high-cost/benefit
traps. At the high-level conceptual view, the Monte Carlo
tree search (MCTS) used in Alphuzz is designed solely
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based on the observable statistic, i.e., execution frequency,
to measure the potential. Conventional MCTS is proposed
uniquely for gameplay scenarios with multiplayer. There-
fore, its intuition is to make the best decision based on the
observable statistics in the gameplay without any forecast.
To escape from the high-cost trap in fuzzing, we cannot
only use the observable statistic, execution frequency, as
Alphuzz to measure the potential of the seeds. Moreover,
we also need to measure the potential benefit, which is the
unobservable statistic, to help the fuzzer escape the high-
cost trap mentioned in the paper.
Challenge 2: Avoid Trapping into Ineffective Seed Schedu-
ling. Ideally, a fuzzer selects a seed based on its probability
of achieving new coverage. However, since it is impractical
to obtain the exact probability, a fuzzer cannot always select
an ideal seed that can achieve maximal coverage. Thus,
existing efforts leverage either cost or benefit to approximate
the probability with different models for seed scheduling.
Nevertheless, none of them is aware of the non-ideal se-
lections caused by this imperfect information and help the
fuzzer make up for the potential coverage loss compared to
the ideal selection. Thus, our model needs to tackle these
non-ideal selections for seed scheduling whenever we find
out the selected seed is not the ideal one.

2.3 Monte Carlo Planning
Monte Carlo planning (MCP) has the potential to model
fuzzing as an evolutionary decision-making process with
a theoretical guarantee [8], [34]. MCP aims to find the opti-
mal selection for the domains that cannot obtain complete
knowledge from the enormous search space in any scenario
without restrictions, i.e., two-players scenario for MCTS,
which makes it capable to transform the seed selection
problem as a Monte Carlo planning process.
Workflow of MCP. Specifically, it uses a stateful search tree
to preserve the previous search statistics for optimizing the
decisions afterward. Each node represents an intermediate
action of the following searching process. MCP then uses
a tree policy to search incrementally based on the previous
results. The tree policy consists of four steps which are also
shown in Figure 2:

1) Selection: Select a current optimal node on the tree
for further exploration.

2) Simulation: Simulate the searching process.
3) Action Preservation: Expand the search tree with a

successor node of the chosen one.
4) Policy Update: Update the selection policy according

to the feedback from the simulation.

Specifically, MCP first determines the most valuable node of
the current tree, which is expected to achieve the maximal
benefit. With the selected node, MCP simulates the search-
ing process defined by the problem domains to provide
the benefit of node chosen, which is independent of the
performance of the search algorithm. The flexibility of the
simulations allows MCP to consider multiple factors in
various domains effectively. If the simulation result is inter-
esting, MCP expands the tree by preserving the simulated
node. Then, use the statistics derived from the simulations
updated for optimizing the following tree policy. Finally,

Simulation Action
Preservation

Policy
UpdatesSelection

Fuzzing
Seed 

Scheduling
Execution  
Monitor

Seed Queue 
Expansion

Adaptive 
Feedback

Monte Carlo Planning

Figure 2: Workflow of the Monte Carlo planning process.

MCP starts a new round of selection process to find the
most promising node in the new search tree.

Analogy between Fuzzing and MCP. The similarities be-
tween fuzzing and MCP inspire us to leverage the concepts
from MCP to solve the aforementioned problems in fuzzing.
As shown in Figure 2, the initial seeds for fuzzing provide
the initial states for examining the search space of the target
program, which can be regarded as the root nodes of the
search tree. The fuzzer then chooses the most promising
seed to explore the target program in each iteration. Sim-
ilarly, the tree policy first selects the node expected to
bring the most benefit in the current tree. Then, mutating
the selected seeds for new coverage can be regarded as a
simulation for the current node. By monitoring the execu-
tions, the fuzzer enlarges its seed queues if new program
behaviors are found, which can also become the condition
to determine the expansion of the search tree. Finally, both
fuzzing and MCP update the potentials based on execution
feedback to maintain the effectiveness of selections in the
following iterations.

Strength of MCP. As one of the state-of-the-art models for
decision-making, MCP has two main strengths compared
with other models: 1) Generality for various domains: One of
the most significant strengths of MCP is the lack of need for
domain-specific knowledge [35]. Specifically, the simulation
stage in MCP is adaptable to various application domains by
accepting any predefined reward function, which makes the
decision-making process independent from the simulation.
MCP can always provide an optimal solution with a prede-
fined reward to update the selection policy regardless of the
simulation stage. With the flexibility of the simulations in
MCP, we can take both the cost and benefit of each seed
when selecting the seed for various mutation strategies.
Moreover, modeling fuzzing as an MCP process enables the
optimized seed selection adapted to other advanced compo-
nents in fuzzing besides seed scheduling, e.g., the choice of
the mutation operators. 2) Worse performance bound: Another
strength of MCP is that it is a state-of-the-art model pro-
viding minimal loss based on its selection strategy, which
helps MCP achieve a better search result faster than other
methods. The loss is the difference between the outcomes of
the MCP and the one using the ideal selection with perfect
information. Specifically, the performance of MCP takes the
benefits from the following theorem.

Theorem 2.1 (Maximal Bias [19]). For K nodes selected for
n times, n > K, the maximal bias of the achieved benefit
compared with the ideal selection, which is represented
by the expectation of the average benefit achieved from



5

each selection, E(benefitn), is bounded as

|E(benefitn)− benefit∗| ≤ O(
lnn

n
) (1)

where benefit∗ is the benefit averaged over all ideal selec-
tions.

Thus, adapting the MCP model for fuzzing can optimize its
seed selection with better effectiveness under guarantee.

2.4 Motivation of Using MCP
Based on the similarity between MCP and fuzzing, we fol-
low its concepts of achieving its strength to solve challenges
for balancing the cost and benefit in seed scheduling.
Solution 1: Quantifying the Cost and the Benefit with the
Upper Confidence Bound. The generality of MCP enables
us to design a proper potential considering the cost and
benefit simultaneously to escape from the high-cost/benefit
traps. In MCP, the selection policy aims to balance the explo-
ration (check the node not examined yet) and exploitation
(dig the node with a promising benefit) to maximize the
outcomes [20]. This goal is equivalent to addressing the
first challenge. Since MCP can estimate the potential of
each node without knowing the perfect knowledge from
expanding the whole search tree, we still need to design its
benefit to make MCP consider the cost and benefit simul-
taneously while following the original theoretical bound.
Specifically, it leverages the concept of Upper Confidence
Bound (UCB) [19], as a confidence interval to quantify the
closeness between the estimated benefit and the real one:

UCBi = X̄i +

√
2 lnN

ni
(2)

where X̄i is the achieved benefit for node i that can be
defined by the problem domain knowledge, which allows
us to consider cost and benefit simultaneously. ni and N are
the total number of selections of the node i and its parent,
respectively. The constant

√
2 is proposed for making the

overall potential converge within the computable bound of
the Maximal Bias shown in Theorem 2.1. The flexibility of
defining the X̄i in MCP allows us to tackle the challenges
by using both the cost and the benefit in UCB.
Solution 2: Measuring the Non-ideal Selection with Re-
gret. The worse performance bound can serve as an indica-
tor for fuzzing to avoid wasting efforts on those non-ideally
selected seeds. To measure the worse performance bound,
MCP utilizes the concept of cumulative regret [19] to measure
the benefit loss due to not selecting the best seeds using
incomplete knowledge, which is

regret =
n∑

i=0

|p∗ − pni | (3)

where p∗ is the ideal benefit achieved on average by the
most promising node in each iteration, and pni is the
actual benefit achieved by the node, n, selected at round,
i. Therefore, as this cumulative regret can indicate the loss
brought by the non-ideal selection, minimizing the regret is
equivalent to solving challenge 2. By measuring the regret
of each selected seed, fuzzer is aware of the non-ideal
selection and thus can further optimize the seed scheduling

Seed Scheduling Scheme

Confidence-based
Seed Selection

Regret-based
Power Scheduling

Input Generation
& Feedback

Source Code

Initial Seeds
Monte Carlo Planning

Seed Selected Seed Selected

Energy  
Countdown

Figure 3: Adapting MCP for fuzzing in BELIEFFUZZ.

scheme. However, the ideal benefit, p∗, cannot be obtained
in practice. Hence, we need to measure the regret with the
proper metric from fuzzing.

3 MODEL GREYBOX FUZZING AS MCUCB
In this section, we first illustrate the transformation from
greybox fuzzing to the MCP system (Section 3.1). We then
demonstrate how BELIEFFUZZ solves the first challenge
by conducting seed selection using the defined UCB (Sec-
tion 3.2). We then further tackle the second challenge by
stopping the mutation before using up the assigned energy
if it does not meet the expectation indicated by the MCP
(Section 3.3).

3.1 Seed Discovery as Tree Expansion
BELIEFFUZZ regards fuzzing as an MCP process shown
in Figure 2. The seeds which represent the intermediate
searching states, are the vertices, V : {v1, v2, . . . , vk}, con-
structing the search tree, T , of the target program. The edge
vivj represents vi discovers vj . We regard the initial seed
for fuzzing as the root vertex of the search tree. In each
fuzzing iteration, we select the most promising seed in the
current search tree. We consider the mutation cycles for the
seed chosen in fuzzing as the simulation state. Afterward,
we expand the search tree with the newly found seeds,
{v′}. Finally, we update the execution statistics needed for
selecting the seeds in the following iteration. Therefore, the
seed selection problem then can be interpreted as which
vertex should be chosen to achieve the maximal outcomes
in each iteration.
Example 3.1. In Figure 4, we illustrate the transformed

search tree of the program in Figure 1. The initial seed 1,
which is the root node of the search tree, detects seeds
2, 3, and 4. We expand the tree by adding these new
nodes as the successors of the root. Thus, the potential
benefits of a node can be represented as the number of
its successors. For instance, seed 3 can detect seeds 5 and
6, which respectively represent the paths ABEFHK and
ABEFHL. After the selected seed has been explored by
fuzzing, its potentials are updated adaptively whenever
a new seed is found.

The detailed workflow of BELIEFFUZZ is presented in Al-
gorithm 1. We initialize the given seed for fuzzing at Line 3.
In each fuzzing iteration, we select the most promising seed
in the current search tree at Line 5 based on our UCB-based
selection (Solution 1) at Line 12. Then, we leverage fuzzer
to conduct mutation as simulation at Line 6. To minimize
the potential coverage loss, BELIEFFUZZ uses regret-based
scheduling for handling the non-ideal selections of the seed
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Algorithm 1 Model fuzzing as MCUCB in BELIEFFUZZ.
1: procedure FUZZING(Sinit)
2: Sinit, initial seeds.
3: T ← Sinit . Initialization
4: while Within Time Budget do
5: v ← FindOne(T ) . Selection
6: {v′} ← Fuzz(v, T ) . Simulation
7: T ← T ∪ {v′} . Expansion
8: T ← Update(v, T ) . Back Propagation
9: end while

10: end procedure

11: procedure FINDONE(T )
12: return max

v∈T
X̄v +

√
lnN
nv

. UCB-based Selection (§ 3.2)

13: end procedure

14: procedure FUZZ(v, T )
15: P ← EnergyAlloc(v)
16: return Mutation(v, P , T ) . Regret-based Scheduling (§ 3.3)
17: end procedure

18: procedure UPDATE(v, T )
19: nv ← nv + 1
20: for all v ∈ T do
21: recompute X̄v

22: end for
23: return T
24: end procedure

2

1

3 4

Undiscovered Seed

Discovered Seed

5 6 7

Discovered
Undiscovered

Figure 4: Transformed tree of the motivating example.

(Solution 2) at Line 16. Afterward, we expand the search
tree with the newly found seeds, {v′} at Line 7. Finally, we
update the execution statistics needed for calculating the
UCB at Line 12 in the following iteration at Line 8.

3.2 Quantify the Seed Potential with the Variant Upper
Confidence Bound
To quantify the cost and benefit of each seed without modi-
fying the original design of MCP (Challenge 1), BELIEFFUZZ
adapts the concept of benefit-cost ratio in cost-benefit analy-
sis [22] to define the UCB in the selection phase of MCP
(Line 12 in Algorithm 1) according to its original design in
Equation 2. Specifically, we quantify the benefit and costs to
avoid falling into the traps as:
Definition 3.1 (Benefit). X̄v in UCB is defined as the po-

tential benefit of a seed, Benefit, which measures the
potential coverage from mutating the seed v:

Benefitv =
rv
nv

(4)

where rv is the number of the potential paths found from
mutating seed v, nv is the times of selecting seed v.

To properly quantify the Benefit for each seed mentioned
in Equation 4, we need to measure the number of paths
that can be discovered from each seed. Our basic idea is to

accumulate the potential coverage of all the blocks covered
by a seed. Specifically, we define the benefit, rb, of a block,
b, as the number of successor blocks in the inter-procedure
control flow graph. For instance, there are three uncovered
blocks from basic block F in Figure 1. Based on this block
benefit, we further define the benefit of the seed v, rv , as

rv =
∑
∀b∈Pv

rb (5)

where Pv is the path executed by seed v.
However, such an accumulated benefit may compute

the block redundantly, thus introducing a bias for the seed
prioritization. For example, Figure 5 is a variant subprogram
of the motivating example in Figure 1. Suppose that we
accumulate the benefits from each block of its execution
path. In that case, the priorities of seeds 1 and 2 are reversed
since the redundantly accumulated benefits of seed 2 from
blocks E, G, and J, which is 9, is larger than the one of seed
1, which is 8.

To overcome the above issue, our intuition comes
from the original seed mechanism in fuzzing: The newly-
preserved seed is used to detect the uncovered paths close
to the newly-discovered program. For example, in Figure 1,
the reason for preserving seed 3 is that it detects a new
block F closer to the uncovered blocks H , K , and L, which
are more likely to cover them compared with other seeds.

Based on the intuition, we only record the benefits using
the number of the uncovered blocks, i.e., blocks F and I
in Figure 1, from the control flow graph, CFG, whose back
edges are removed. Specifically, we calculate the number of
uncovered successors from all covered blocks, B, of each
seed using the following steps:

1) ∀b ∈ B, ∀E(b, bi) ∈ CFG, if bi is uncovered, bi ∈ S
2) ∀b ∈ S, ∀E(b, bj) ∈ CFG, if bj is uncovered, bj ∈ Sr

3) if (Sr ∪S) 6= S, go back to step 2 with S ← (Sr ∪S)

where E(bi, bj) is the edge between block bi and bj in CFG.
The size of the final deduplicated set Sr is the benefit

of B. Using the three steps on the control flow graph,
we can obtain the number of distinct uncovered blocks
that are reachable for each seed. Therefore, the benefit of
seeds 1 and 2 in Figure 5 are 3 and 2 in BELIEFFUZZ,
which provides a more precise benefit measurement than
the accumulation-based method. Meanwhile, BELIEFFUZZ
adaptively normalizes the benefit by the maximal coverage
achievable by a single seed in the current seed queue to
satisfy the assumptions that the benefit should be in [0, 1]
in Theorem 2.1. Moreover, we dynamically update the ben-
efits of each seed according to the coverage discovery. For
example, if any uncovered block, i.e., block H , K , or L, has
been covered during the fuzzing process, BELIEFFUZZ then
updates the benefit of seeds reachable to this block.

The potential benefit drives BELIEFFUZZ to select the
seed that can find more coverage defined by rv . Moreover,
BELIEFFUZZ gradually loses expectation for those potential
benefits not achieved during the increase of selection, n,
which avoids excessively selecting the seed towards the
path conditions that are too complex to cover. Besides,
instead of measuring the benefits based on the achieved
coverage in existing work [25], [37], BELIEFFUZZ leverages
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Figure 5: Comparison of accumulated benefit with opti-
mized one used in BELIEFFUZZ.

the potential coverage to prevent fuzzing the well-explored
program for better efficiency.

Definition 3.2 (Confidence). Each seed has a confidence,
Confidence, which measures the possibility of achieving
the benefit of the seed v by its cost ratio as

Confidencev =

√
2 lnN

nv
(6)

where N is the times of selecting the parents of seed v.

Apart from prioritizing the seed with higher benefits, BELI-
EFFUZZ also places more confidence in the seed with fewer
selections since the cost ratio increases gradually from the
failures to detect the coverage. Unlike execution frequency,
selection frequency follows the design of UCB while not
involving frequent updates. Overall, we have the defined
UCB for each seed, representing the expected possibility of
finding new coverage by combining the two aspects:

UCBv = Benefitv + Confidencev (7)

Thus, the fuzzer selects the seed that achieves the highest
coverage benefit while using the minimum mutation efforts
measured by its costs.

Remark. First, we combine the achievable potential cover-
age as the benefit with selection frequency as the cost for
each seed, which makes fuzzing avoid falling into high-
cost/benefit traps. Second, we want to emphasize that un-
like existing work [41] violates the design of their model,
the MCUCB used in BELIEFFUZZ can maintain the effective-
ness of the original models. Monte Carlo-based approach
should select the node from any node that may explore
new states [13]. Instead, Alphuzz completely ignores the
intermediate seeds that can find new coverage in fuzzing,
which hinders the effectiveness of examining the programs.
Therefore, Alphuzz cannot maintain the theoretical bounds
proposed in the Monte Carlo method as BeliefFuzz does.
Instead, BELIEFFUZZ does not compromise the design of
the Monte Carlo planning by regarding all the seeds as
selectable. We have demonstrated the empirical evidence
from the evaluation mentioned in Section 4.4.

Total Number of Seeds

Mutations Needed

Average Mutations Needed

} Ideal Selection

Figure 6: Intuition for regret-based power scheduling. The
ideal-selected seed should find new coverage within the
average expectation among all seeds.

3.3 Early Terminate the Mutation with Regret

Even though we use the UCB to select the seeds with a
theoretical guarantee, the seed chosen may not be the most
promising one due to incomplete information (Challenge 2).
To further make up for the potential coverage loss caused
by these non-ideal selections, our intuition is to terminate
the mutation iteration of the selected seed earlier when it
cannot meet the expectation to discover new paths (Line
16 of Algorithm 1). Specifically, we adapt the concept of
cumulative regret in MCP for measuring the correctness of
each selection to avoid excessively mutating the seeds that
do not achieve the coverage as expected.

However, as we discussed in Section 2.4, it is impractical
to obtain the ideal achievable coverage, p∗, to calculate
the regret shown in Equation 3. To address this issue, we
propose utilizing the number of mutations needed for find-
ing new coverage as the metric to measure the regret. We
regard p∗ in Equation 3 as the minimum mutation that
should use for finding new paths, and pvi is the actual
mutation used for the seed chosen, v, at the round, i.
Intuitively, no matter what evolutionary input generation
method is used, the ideal selection should find the seed
that can achieve the most coverage with the least number
of mutations. With the transformed cumulative regret, we
minimize the potential coverage loss using an optimized
power scheduling mechanism by stopping the mutation
that does not meet the minimal expectation of finding new
coverage. More specifically, if the chosen seed has not found
any new coverage using the expected number of mutations,
this iteration should be stopped at once, even if it has not
used up assigned energy.

To properly quantify this expectation, our basic intuition,
illustrated in Figure 6, is that the chosen seed, which is
expected as the most promising one in the seed queue,
should need no more than the average number of mutations
needed for achieving new coverage. Based on this intuition,
BELIEFFUZZ records the number of mutations used to detect
the first new path in each iteration of a selected seed as its
energy used, and the average number of mutations used to
detect all paths found. We then utilize these two metrics as
the minimum expectation to stop the mutation iteration of
the seeds chosen.

Algorithm 2 shows the detail of our design. Before
mutating each selected seed, we first obtain the total number
of mutations, Mall, from the tree, T , and the number of
seeds found by the selected seed, Fv , with its energy used,
Ev and mutation conducted, Mv of the seed chosen at Lines
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Algorithm 2 Regret-based scheduling

1: procedure MUTATION(v, P, T )
2: v, seed chosen. P , assigned energy. T , current tree.
3: Ev , amount of energy used of v.
4: Fv , number of seeds found by v.
5: Mv,Mall, number of mutations done for v and all seeds.
6: {vnew} ← ∅
7: ncurrent, nlast, found← 0
8: while P 6= 0 do
9: if Fv > 0 then

10: if |{vnew}| then
11: Expenergy ←Mv/Fv

12: else
13: Expenergy ← Ev/Fv

14: end if
15: else
16: Expenergy ←Mall/|T |
17: end if
18: ncurrent ← ncurrent + 1
19: if ncurrent − nlast > Expenergy then
20: end mutation()
21: end if
22: found, v′ ← fuzz one(v)
23: if found then
24: Ev ← Ev + ncurrent − nlast

25: Fv ← Fv + 1
26: nlast ← ncurrent

27: {vnew} ← {vnew} ∪ {v′}
28: end if
29: P ← P − 1
30: end while
31: return {vnew}
32: end procedure

3-5. There are three expectations that BELIEFFUZZ used to
evaluate whether the selected seed is the ideal one.

• First, if the seed has not found any new path yet,
BELIEFFUZZ expects this seed to discover the first
new path within the average number of mutations,
Mall/|T |, used for detecting a new path according to
the overall seed at Line 16. If it has found at least one
new path, BELIEFFUZZ updates the used energy to
adjust this threshold dynamically for later mutation.

• Second, BELIEFFUZZ expects the chosen seed to dis-
cover new coverage within its average performance
to prove the correctness of selection. Specifically for
each seed selected, BELIEFFUZZ expects the chosen
seed to cover at least one new path within its average
energy used for finding new paths, Ev/Fv at Line 13.

• Third, BELIEFFUZZ anticipates finding new paths
according to its average mutation needed, Mv/Fv at
Line 11, after finding a new path in this iteration,
which is more relaxed than the previous expectation
since it has achieved the minimum goal of this itera-
tion to find new coverage. Whenever the chosen seed
cannot meet either of the expectations,

BELIEFFUZZ stops mutating it to avoid further energy
waste at Lines 19-20. Finally, the discovered seeds, {vnew},
are preserved for expanding the search tree at Line 31.
Therefore, BELIEFFUZZ can avoid wasting excessive efforts
on those seeds without much coverage outcome. Noted that
our method can be adapted to various mutation strategies:
Even though different mutation strategies could influence

Table 1: Baseline fuzzers.

ID Fuzzer Description
1 AFL [1] Most widely-used evolutionary fuzzer
2 AFL++ [15] AFL integrated with multiple advanced optimizations
3 FairFuzz [24] Masked mutation for less-frequent branches
4 AFLFast [7] Sophisticated power scheduling with Markov chain
5 EcoFuzz [39] Multi-armed bandit model for seed selection
6 Alphuzz [41] MCTS model solely using execution frequency
7 K-Scheduler [33] Model seed’s potential with graph centrality

Table 2: Real-world benchmark programs and vulnerabili-
ties. The project size is measured in thousands of lines of
code. Tr is the time costs for the offline reachability analysis
providing the potential benefit for each branch.

ID Project Version Input format Size Tr Program

1 Bento4 1.6.0.0 MP4 100 6 mp42aac
2 mp4info

3 Binutils 2.36 ELF 4722 53 nm-new
4 objdump

5 Faust 2.34.6 DSP 452 67 faust

6 Fig2dev 3.2.8b FIG 51 4 fig2dev

7 Gpac 1.0.1 MP4 1063 153 mp4box

8 ImageMagick 7.1.0-3 BMP 555 78 magick

9 Libjpeg-turbo 2.1.1 JPG 89 34 djpeg

10
Libtiff 4.3.0 TIFF 978 12

tiff2pdf
11 tiff2ps
12 tiffcrop

the effectiveness of finding coverage, the average number
of mutations needed for detecting new coverage is also
changed, which allows us to adjust the regret dynamically.

4 EVALUATION

We implemented BELIEFFUZZ, a greybox fuzzer with an
optimized seed scheduling based on LLVM [21]. As shown
in Figure 3, BELIEFFUZZ takes the program source code and
initial seeds as its inputs. The input source code is compiled
to LLVM bitcode, on which the static analysis that computes
the initial benefit of each block is performed. By default, we
use AFL as the fuzzing engine to select seeds and schedule
energy for mutation, allowing BELIEFFUZZ to be integrated
with various AFL-based greybox fuzzing engines, such as
Mopt [2] and FairFuzz [24].

4.1 Evaluation Setup

The evaluation consists of three parts. First, we compared
BELIEFFUZZ against state-of-the-art fuzzers from two as-
pects, coverage and vulnerability discovery (Section 4.2).
Second, to understand how BELIEFFUZZ selects and assigns
proper energy for the seeds, we also evaluated how much
our strategies contribute to reducing the time cost of fuzzing
(Section 4.3). Third, we illustrate the strength of our method
and discuss the potential future improvement (Section 4.5).

Baselines. We compared BELIEFFUZZ with the fuzzers
shown in Table 1. Their technical details are mentioned in
Section 2.1. AFL [1] is the most widely used greybox fuzzer.
AFL++ [15] integrates AFL with multiple optimizations pro-
posed by the state of the art. AFLFast [7], EcoFuzz [39], and
AFL-Hier [37] are three recent greybox fuzzers that priori-
tize the most promising seeds to maximize the coverage in a
given time budget using execution frequency. We noticed
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Figure 7: Comparison of achieving the same coverage conducted by each benchmark fuzzer, AFL, AFL++, FairFuzz,
AFLFast, EcoFuzz, K-Scheduler, and Alphuzz in 24 hours using BELIEFFUZZ. Figure 7a) to 7g) present the amount of
time needed for BELIEFFUZZ to achieve the coverage. Figure 7h) to 7n) present the number of executions needed for
BELIEFFUZZ to achieve the coverage. The x-axis represents the programs identified using the index shown in Table 2.
The y-axis denotes the improved ratios compared with the benchmark fuzzers. We use the performance of the benchmark
fuzzer as the baseline to demonstrate the improvements brought by BELIEFFUZZ. The results are the average outcomes
from running each fuzzer ten times.

that AFL-Hier has functionality issues when evaluating
target programs and their results cannot be reproduced.
Since its authors have not replied to our request, we do not
compare it in our evaluation. Alphuzz [41] is one recent
paper that uses MCTS but only relies on execution fre-
quency for selection criteria. FairFuzz [24] prefers the rare-
executed branch and adapts a musked mutation strategy
to avoid mutating the related input bytes. K-Schedule [33]
uses graph centrality to approximate the potential coverage
that can be achieved by each seed. We make all chosen
fuzzers and BELIEFFUZZ skip the deterministic stage of
mutation to make a fair evaluation the effectiveness of the
seed scheduling mechanism.

Benchmarks. We evaluated our tools on a few well-
evaluated real-world programs to show the generality of
the improvement. We also chose 12 binaries in 8 real-world
programs that have been frequently evaluated in existing
literature [7], [24], [25], [33], [39]. These programs, shown
in Table 2, have diverse functionalities with various input
formats. Meanwhile, we provide the time cost of the initial
static analysis, Tr , for each project, all of which is less than 3
minutes. Such small time cost is acceptable compared to the
24-hour time budget for fuzzing.

Configurations. The initial seed corpus decides the effec-
tiveness of fuzzing [31]. To achieve the best performance of
related work, we used the seeds provided by AFL in their
official GitHub repository3. The seeds for faust4 and fig2dev5

were provided by their GitHub repositories. We ran every
experiment 10 times with a 24-hour time budget for each
time. We also employed the Mann-Whitney U Test [27] to
demonstrate the statistical significance of the contribution
made by each part of our framework. All experiments were
conducted on an Intel Xeon(R) server using Ubuntu 20.04
LTS with four Platinum 8358 CPUs and 512GB of memory.

3. https://github.com/google/AFL/tree/master/testcases
4. https://github.com/grame-cncm/faust/tree/master-dev/tests
5. https://sourceforge.net/p/mcj/fig2dev/ci/master/tree/fig2dev/tests/data/

4.2 Comparing to the State of the Art

We first demonstrate the efficiency brought by our seed
scheduling model. Specifically, we evaluated the time cost
and the number of executions needed by BELIEFFUZZ to
obtain the same coverage achieved by each baseline fuzzer
in 24 hours on the benchmark programs. To avoid the
coverage interference caused by the bitmap collision [16],
we use the edge coverage metric in AFL++ [15], which
follows the design of CollAFL to resolve the collision issue.

Figure 7 lists the comparison results. In general, BE-
LIEFFUZZ outperforms existing work in covering the pro-
gram more efficiently, with 3.22x speedup on average in
all programs. Specifically, BELIEFFUZZ is 2.63x, 3.74x, 2.85x,
2.12x, 2.32x, 5.63x, and 3.24x faster on average compared to
AFL, AFL++, FairFuzz, AFLFast, EcoFuzz, K-Scheduler, and
Alphuzz to achieve the same coverage within 24 hours with
all p-values less than 0.01. Furthermore, with the optimized
seed selection and power scheduling model, BELIEFFUZZ
only needs 2.77x, 1.64x, 2.00x, 2.38x, 1.82x, 1.18x, and 1.45x
fewer executions for achieving the same coverage com-
pared with the benchmark fuzzers, which is 1.89x fewer
on average. Such a large proportion of time and execution
reduction allows BELIEFFUZZ to save many computational
resources. We notice that BELIEFFUZZ may execute more to
find the same coverage compared with AFL++, EcoFuzz,
K-Scheduler and Alphuzz in same project shown in Fig-
ures 7i, 7l, 7m and 7n. Nonetheless, BELIEFFUZZ can achieve
it much faster with higher coverage overall, according to
Figures 7b, 7e, 7f and 7g, which shows these fuzzers could
stick at some paths with a long execution time. Moreover,
we can also notice that Alphuzz does not show much im-
provement compared with others, which proves the impact
of effectively balancing the cost and benefit simultaneously
with MCUCB rather than the conventional MCTS.

Moreover, such efficiency improvement also enhances
the effectiveness in terms of coverage. Figure 8 demonstrates
the achieved coverage based on the previous experiment.
On average, BELIEFFUZZ achieves 1.23x, 1.43x, 1.27x, 1.17x,
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Figure 8: The number of paths discovered by the different fuzzers in 24-hour experiments averaged over ten runs. The x-
axis represents the fuzzers identified using the index shown in Table 1. The last entry represents the results of BELIEFFUZZ.
The y-axis demonstrates the number of paths found according to the results in 10 runs.

0 4 8 12 16 20 24

0

500

1000

1500

2000

BeliefFuzz
BeliefFuzz-c
BeliefFuzz-r

(a) mp42aac

0 4 8 12 16 20 24

0

1000

2000

3000

4000

BeliefFuzz
BeliefFuzz-c
BeliefFuzz-r

(b) faust

0 4 8 12 16 20 24

0

2000

4000

6000

BeliefFuzz
BeliefFuzz-c
BeliefFuzz-r

(c) nm-new

0 4 8 12 16 20 24

0

2000

4000

6000

BeliefFuzz
BeliefFuzz-c
BeliefFuzz-r

(d) tiffcrop

Figure 9: Coverage achieved by BELIEFFUZZ, BELIEFFUZZ-c, and BELIEFFUZZ-r averaged in ten runs within 24 hours. We
use the results of BELIEFFUZZ as the baseline. The x-axis is the time spent by fuzzers. The y-axis is the coverage achieved
by different fuzzers. The statistics are averaged over ten runs, and the shadow denotes the 95% confidence interval.

2.55x, 1.72x, and 1.53x more coverage than AFL, AFL++,
FairFuzz, AFLFast, EcoFuzz, K-Scheduler, and Alphuzz,
respectively. The overall improvements represent that BELI-
EFFUZZ assigns proper energy for the higher-potential seed
to detect new coverage with less resource wasted.

In the meantime, BELIEFFUZZ detects 47 bugs in the
evaluation projects shown in Tables 3 and 4, which is 31
more than the baseline fuzzers on average. The details of
these bugs can be found through this link.

4.3 Ablation Study

To further understand the contribution of the MCUCB
model used in BELIEFFUZZ, we evaluated the contribu-
tion of the two individual components, namely UCB-based

selection and regret-based scheduling. Specifically, we set
up the two variants of BELIEFFUZZ, BELIEFFUZZ-r and
BELIEFFUZZ-c, which disable the UCB-based selection and
the regret-based scheduling, respectively, and rerun the
previous experiments.

Figure 9 shows the experimental results. We can observe
that BELIEFFUZZ achieves 12.18% and 15.02% more cover-
age than BELIEFFUZZ-r and BELIEFFUZZ-c on average, with
41.24% and 43.25% time reduction for achieving the same
coverage in 24 hours experiment. This result demonstrates
the significance and the necessity of the two strategies, as
both of them indeed contribute to the efficiency of seed
scheduling, and their combination allows us to achieve
higher coverage with less time consumption.

https://docs.google.com/spreadsheets/d/1LGC_ePbajVNl0QKFtzT6BpPAIe3P8ID2wmGmmSPWctQ/edit?usp=sharing
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Figure 10: Distributions of the coverage achieved by each seed and its frequency of being selected in each fuzzer. We
demonstrate the average benefit/cost proportion when fuzzing program objdump in 24 hours experiment. The x-axis is
the index of seeds in the discovering order. The y-axes are the proportions of the coverage achieved and the number of
selections of each seed, illustrated in blue dots and red crosses, respectively.

Table 3: Bugs detected by different fuzzers.

AFL AFL++ FairFuzz AFLFast EcoFuzz K-Scheduler Alphuzz BELIEFFUZZ

mp42aac 1 1 2 2 1 2 1 3
mp4info 8 9 0 8 8 5 8 9
nm-new 0 0 0 0 0 0 0 0

objdump 0 0 0 0 0 0 0 1
faust 2 1 1 2 3 3 0 3

fig2dev 0 0 0 0 0 0 0 2
mp4box 0 0 0 0 0 0 0 20
magick 0 0 0 0 0 0 0 0

djpeg 0 0 0 0 0 0 0 0
tiff2pdf 0 0 0 0 0 0 0 0

tiff2ps 0 0 0 0 0 0 0 2
tiffcrop 0 1 0 2 0 1 0 7

Total 11 12 3 14 12 11 9 47

Table 4: Details of Bugs detected by BeliefFuzz.

Program Reported Bugs

mp42aac issue #637-639
mp4info issue #622-623, 630, 640-642, 645, 651-652

objdump bug #28247
faust issue #655-657

fig2dev ticket #125-126
mp4box issue #1884, 1886-1893, 1895-1905

tiff2ps issue #267-268
tiffcrop issue #269-273, 275, 291

4.3.1 Does the Selection of Each Seed Meet the Expecta-
tion to Find Coverage?

To show how the adaptive UCB used in BELIEFFUZZ helps
select the seed that can achieve higher coverage, we eval-
uated the benefit/cost ratio of each seed measured by the
number of new paths found and the total number of se-
lections. We used the same evaluation configurations used
previously with ten repeat experiments and studied the
distributions of the two aspects mentioned.

Table 5 shows the experiment results. Ideally, the fuzzer
should prioritize the seeds that can achieve higher cov-
erage. Therefore, the distribution of coverage achieved by
each seed should be close to the number of selections. We
used the Jensen–Shannon divergence (JS divergence) [26]
to measure this similarity between the two distributions.
Overall, BELIEFFUZZ has the smallest JS divergence, 3.79E-
02, compared with the state-of-the-art fuzzer on average and
outperforms in all the evaluated projects. This statistic rep-
resents the effectiveness of UCB-based scheduling, which
makes the seed chosen to find expected coverage without
resource waste.

We further studied one case to illustrate such effective-
ness using the results of objdump shown in Figure 10. The

Table 5: The Jensen–Shannon divergence between the two
distributions of the number of selections spent and the
coverage achieved for each seed. The smaller the divergence
is, the more similar the two distributions are. n/a represents
the occurrence of the functionality issues.

AFL AFL++ FairFuzz AFLFast EcoFuzz K-Scheduler Alphuzz BELIEFFUZZ

mp42aac 0.269 0.215 0.327 0.273 0.107 0.271 0.178 0.058
mp4info 0.283 0.278 0.316 0.276 0.120 0.297 0.226 0.037
nm-new 0.339 0.294 0.298 0.278 0.161 0.384 0.249 0.021

objdump 0.413 0.317 0.362 0.345 0.143 0.432 0.233 0.015
faust 0.515 0.481 0.568 0.395 0.139 0.413 0.183 0.012

fig2dev 0.211 0.579 0.464 0.237 0.126 0.502 0.278 0.079
mp4box 0.421 0.442 0.419 0.407 0.092 0.491 0.281 0.026
magick 0.444 0.405 0.456 0.452 0.131 0.516 0.327 0.012

djpeg 0.433 0.370 0.514 0.497 0.182 0.422 0.303 0.061
tiff2pdf 0.362 0.474 0.626 0.364 0.177 0.544 0.307 0.070

tiff2ps 0.368 0.420 0.536 0.363 0.165 0.448 0.284 0.045
tiffcrop 0.389 0.302 0.461 0.370 0.086 0.417 0,274 0.019

Avg. 0.371 0.381 0.446 0.355 0.135 0.428 0.260 0.038

distributions demonstrate that BELIEFFUZZ does improve
the effectiveness of the seed scheduling in making each seed
achieve the expected coverage benefit since the two distri-
butions are close to each other. On the contrary, all bench-
mark fuzzers stick to partial seeds with an extremely high
selection frequency and thus eventually cannot efficiently
achieve high coverage. We find that BELIEFFUZZ selects the
seed more evenly to explore the program thoroughly. Thus,
BELIEFFUZZ can find more coverage overall.

Surprisingly, we notice that the four baselines, AFL,
AFLFast, FairFuzz, and K-Scheduler find new coverage us-
ing a minority of the seeds (< 20%) in 24-hour experiments
while all seeds are selected more evenly than other fuzzers.
For K-Scheduler, it almost selects the seeds evenly, which
makes most of the mutations unable to detect new coverage,
and some seeds have never been selected during the 24-
hour experiment. Its largest JS divergence also indicates
that such a selection mechanism cannot simultaneously
balance the cost and benefit. We observe one of the possible
reasons is that an enormous size of the programs may
introduce bias for calculating the potential for each seed
using graph centrality. This result proves the importance
of the seed scheduling mechanism. It also demonstrates the
significance of the next evaluated component, regret-based
power scheduling, to terminate the mutation that cannot
find any news coverage at an early stage.
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Table 6: The proportions of the mutation iterations not
achieving new coverage in the evaluated fuzzers. The results
come from 24-hour experiments averaged over ten runs. No-
ticed that all these iterations in BELIEFFUZZ are terminated
earlier with the regret-based power scheduling.

AFL AFL++ FairFuzz AFLFast EcoFuzz K-Scheduler Alphuzz BELIEFFUZZ

mp42aac 99.48% 98.93% 99.91% 99.85% 84.64% 71.69% 87.21% 37.22%
mp4info 99.42% 99.40% 99.92% 99.85% 84.58% 66.75% 82.13% 57.38%
nm-new 99.34% 98.76% 99.93% 99.67% 79.73% 70.36% 82.29% 64.62%

objdump 99.40% 98.65% 99.95% 99.68% 83.51% 81.23% 79.34% 74.98%
faust 98.93% 98.73% 99.81% 98.86% 75.60% 72.42% 81.83% 71.16%

fig2dev 99.71% 98.74% 99.90% 99.82% 86.02% 96.42% 89.77% 53.68%
mp4box 99.24% 99.57% 99.24% 98.22% 78.81% 93.15% 74.90% 69.02%
magick 99.12% 98.23% 99.88% 99.58% 81.37% 72.46% 81.12% 68.13%

djpeg 99.38% 98.60% 99.96% 99.77% 88.16% 76.11% 83.71% 57.09%
tiff2pdf 99.53% 99.00% 99.97% 99.85% 84.15% 88.68% 87.32% 70.02%

tiff2ps 99.56% 99.36% 99.97% 99.84% 86.06% 86.27% 86.49% 63.45%
tiffcrop 99.54% 98.21% 99.95% 99.81% 99.96% 93.23% 82.09% 74.47%

Avg. 99.39% 98.85% 99.87% 99.65% 84.38% 80.73% 83.18% 63.43%

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
ug
D
et
ec
tio
n
Ti
m
e
(h
)

Bug Index

BeliefFuzz BeliefFuzz-c

Avg: 2.658 h Avg: 2.663 h

BeliefFuzz-c
15

BeliefFuzz
49

Number of Bugs Detected

Figure 11: The impact of regret-based scheduling for bug
detection. The x-axis is the index of bugs found in the pre-
vious experiments in both BELIEFFUZZ and BELIEFFUZZ-c.
The y-axis is the time used for detection.

4.3.2 Can Regret-based Scheduling Reduce Energy
Waste?

Regret-based scheduling stops the fuzzing iteration if no
coverage is found using the expected number of mutations.
To understand the effectiveness of the termination, we first
evaluated the number of mutation iterations that do not con-
tribute any coverage in the benchmark fuzzers. Then, we ex-
amined the proportion of the mutation iterations terminated
by the regret-based energy assignment in BELIEFFUZZ. We
used the same evaluation configuration as Section 4.2 and
ran each fuzzer in the evaluation benchmark mentioned in
Table 2 with a time budget of 24 hours.

The results are shown in Table 6. Overall, a majority
of the mutation iterations (>90% on average) in existing
fuzzers, cannot contribute new coverage to the results,
which denotes a huge resource waste in fuzzing. This
statistic also explains why all existing work cannot explore
the majority of the discovered seeds even once in previous
experiments shown in Figure 10. They all excessively allo-
cate the energy to the seeds selected without any insurance
if the selection is not ideal. Fortunately, BELIEFFUZZ can
stop these useless mutation iterations earlier to improve
efficiency. Overall, BELIEFFUZZ has the lowest failure rate
(63.43%) on average of finding new coverage for each
selected seed, further indicating the effectiveness of seed
selection. Therefore, BELIEFFUZZ can efficiently switch to
promising seeds for achieving higher coverage.

Moreover, we further show the improvement of regret-
based scheduling by evaluating the different time costs
for bug detection. The results shown in Figure 11 indicate
regret-based scheduling can help BELIEFFUZZ detect 34
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Figure 12: Empirical evaluation of the guarantee in
BELIEFFUZZ-c and Alphuzz. The x-axis represents the pro-
gram identified using the index shown in Table 2. The y-axis
is the value calculated for the regret and bound based on
Theorem 1.

more bugs, Even though BELIEFFUZZ has almost equiva-
lent performance compared with BELIEFFUZZ-c for those
detected bugs, the overall outcomes demonstrate that the
early termination of mutating unproductive seeds helps the
fuzzer detect more bugs.

4.4 Empirical Evidence of the Guarantee

The usage of the MCUCB model can provide a bound for the
application scenario, which can indicate that the potential
coverage loss caused by non-ideal selection is bounded.
However, it is impractical to verify the existence of the
bound in Theorem 1 since we cannot obtain the ideal benefit,
benefit∗. Therefore, we want to study whether the bound
exists empirically. Specifically, we conduct the experiment
to verify the existence of the guarantee as shown below:

|E(benefitn)− benefit∗| ≤ O(
lnn

n
)

where benefit∗ is the benefit averaged over all ideal selections.
To measure the existence of the bound, we leverage

several approximations for the ideal scenarios. First, we
assume that a fuzzer can select the seeds using perfect
information, which means that all selected seeds can find a
new path. Next, we collect the relevant statistics, the actual
coverage achieved for benefit∗, and the selection times, n, in
fuzzing for calculating Theorem 1. Specifically, we use

|E(benefitn)− benefit∗| = |1− CoverageAchieved

n
|

CoverageAchieved is the overall coverage achieved while
mutating the n selected seeds. We regard O( lnn

n ) as lnn
n

to simplify the formula computation.
We evaluate the final results and real-time performance

in 24-hour experiments ten times, respectively. The average
results shown in Figure 12 indicate the existence of the guar-
antee since all regrets are less than the maximal bound calcu-
lated by the theorem in all evaluated projects. As the bound
represents the maximal bias toward the ideal selection, the
difference between the regret and the bound represents the
ability of the selection mechanism. The larger the distance
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is, the better the selection approach is. Meanwhile, we find
out that Alphuzz indeed does not have a guarantee because
of the conventional Monte Carlo method.

Overall, the existence of the guarantee indicates BELIEF-
FUZZ can balance the cost and the benefit simultaneously
to improve fuzzing, which the maximal bias of the coverage
achieved compared with the one using the ideal selection
is now computable. Meanwhile, the guarantee provides an
expectation of the potential coverage that can be achieved
so that we can use it to arrange the time budget spent
for fuzzing. Specifically, we can predict the least coverage
achieved, benefit∗, by fuzzer using the number of selections,
n, when assuming the ideal selection can achieve the highest
coverage, which the average benefit, E(benefitn), is 1.

Moreover, the guarantee can help quantify the improve-
ment of future work. As the guarantee provides a com-
putable approximation for fuzzing, future work can use it
to analyze their optimization theoretically based on the im-
provement of the guarantee. Specifically, fuzzing can have
a better selection mechanism to enhance the performance
along with the minimization of the maximal bound.

4.5 Discussion
Benefit Beyond Coverage. In BELIEFFUZZ, the UCB consists
of the benefit based on the potential coverage achievable
for each seed. This metric is designed for coverage-guided
fuzzing. Nonetheless, according to the concept in MCP,
the benefit is adaptable for different problem domains,
which provide the possibility to extend BELIEFFUZZ for
other application scenarios. For example, we can design the
benefit for high-level semantics, e.g., event dependence in
system calls for operating systems. Other semantics, such as
program state machine or automata and function similar-
ity, can support fuzzing detect different kinds of program
behaviors. Meanwhile, MCP supports integrating fuzzing
with other techniques such as concolic execution, which
their combination can help design a more robust benefit as
guidance for future research.
Combining with Input Generation. Input generation and
seed scheduling are the two main factors dominating the
fuzzing performance. However, the majority of the existing
work improves them independently, which could not make
their optimized method generalized and extendable for
future work. The model of MCUCB used in BELIEFFUZZ
currently adapts its basic form mentioned in Section 2,
which regards the input generation as the default policy of the
tree. Some existing theories are attempting to improve the
dynamic simulation by the scheduling strategies [9], [13],
[14]. It could be the future direction for fuzzing to simulta-
neously improve input generation and seed scheduling for
higher performance.
Threats to Validity. The main concern is the influence of
randomness in the input generation. Even though we have
conducted the experiments multiple times for fairness, dif-
ferent input sequences might produce fluctuated outcomes
in other projects. Still, the results meet the expectation that
BELIEFFUZZ achieves higher coverage than the benchmark
fuzzers with less time cost and the number of executions.

5 RELATED WORK

Application-based Seed Scheduling. The goal of fuzzing is
to find more vulnerabilities in a given program. Therefore,
coverage may not be the only metric to measure progress
and various fitness functions have been designed. Directed
fuzzing, which aims to reproduce a targeted vulnerability
residing at specific parts of a program, utilizes different
distance metrics [6], [10] to measure the closeness of the
executed seed toward the vulnerable program point. Mean-
while, directed fuzzing also terminates the execution ear-
lier if it cannot meet the expectation to achieve the goal.
FuzzGuard [3] leverages the deep learning model to predict
the reachability before the execution. Beacon [18] stops the
execution whenever it violates the precondition inferred
to trigger the target vulnerabilities. Performance-oriented
fuzzing [23], [30] prefers the seed that triggers more execu-
tion time cost. Similarly, the amount of memory usage is set
as the fitness function for finding exhaustive memory usage
issues [38]. Furthermore, instead of these concrete metrics,
abstract state machines that model the high-level semantics
can also prioritize the seeds. For example, UAFL [36] gen-
erates a state machine for the use-after-free vulnerability.
Seeds that explore more states are prioritized for further
exploration. Overall, designing a precise benefit function is
still a crucial problem for fuzzing, but BELIEFFUZZ allows
extending the definition of benefit and still can provide a
guarantee no matter what benefit is defined to avoid falling
into local optima.
Scheduling for Parallel Fuzzing. The other problem closely
related to seed scheduling is prioritizing seeds in multiple
cooperated fuzzing techniques. As mentioned earlier, the
two most common assistant techniques, taint analysis and
concolic execution, are notorious for their scalability issues.
Therefore, existing efforts attempt to find the most valuable
seed for making full use of these precise but expensive
methods. To measure the value of the seeds, Digfuzz [40]
regards the execution frequency of each path prefix as its
difficulty and chooses the most difficult one for symbolic
execution. ParmeSan [29] considers the number of reachable
checks reported by a sanitizer [32] to be the potential of seed
to find more bugs. Furthermore, Enfuzz [12] combines mul-
tiple state-of-the-art fuzzers into one platform and makes
their seed queues cooperate in taking the benefits from all
existing work simultaneously. On the contrary, BELIEFFUZZ
focuses on improving an individual fuzzer, and we will
extend the scheduling scheme to support multiple fuzzers
in future work.

6 CONCLUSION

We have presented BELIEFFUZZ, which transforms the seed
scheduling procedure in fuzzing into a Monte-Carlo plan-
ning process. It prevents the seed scheduling procedure
from falling into high benefit/cost traps. Compared with
existing greybox fuzzers, BELIEFFUZZ is more efficient with
3.22x speedup to achieve the same coverage. Such efficiency
improvements also enable effectiveness enhancement with
a 1.56x coverage increase.
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