
Titan : Efficient Multi-target Directed Greybox Fuzzing

Heqing Huang:, Peisen Yao;�, Hung-Chun Chiu: Yiyuan Guo:, Charles Zhang:

:The Hong Kong University of Science and Technology, China
;Zhejiang University, China

:{hhuangaz, hchiuab, yguoaz, charlesz}@cse.ust.hk, ;pyaoaa@zju.edu.cn

Abstract—Modern directed fuzzing often faces scalability issues
when analyzing multiple targets in a program simultaneously.
We observe that the root cause is that directed fuzzers are
unaware of the correlations among the targets, thereby could
degenerate into a target-undirected method. As a result, di-
rected fuzzing suffers severely from efficiency when reproduc-
ing multiple targets.

This paper presents Titan, which enables fuzzers to distin-
guish correlations among various targets in the program and,
thus, optimizes the input generation to reproduce multiple tar-
gets effectively. Leveraging these correlations, Titan differenti-
ates seeds’ potential of reaching each target for the scheduling
and identifies bytes that can be changed simultaneously for
the mutation. We compare our approach to eight state-of-the-
art (directed) fuzzers. The evaluation demonstrates that Titan
outperforms existing approaches by efficiently detecting mul-
tiple targets, achieving a 21.4x speedup and requiring 95.0%
fewer number of executions. In addition, Titan detects nine
incomplete fixes, which cannot be detected by other directed
fuzzers, in the latest versions of the benchmark programs with
two CVE IDs assigned.

Index Terms—Directed fuzzing, Multi-target, Path correlation

1. Introduction

Directed fuzzing is a highly effective method for im-
proving the diagnostics efficiency of program behaviors
by focusing on testing specific program locations. It has
many important applications, such as testing vulnerability
patches with regression [1], [2], reproducing crashes [3], [4],
validating hundreds of static analysis reports [5], [6], and
generating proofs-of-concept for various vulnerabilities [7].
However, software systems are becoming increasingly large
and evolving at a high speed. As a result, each run of
fuzzing tests often needs to address a large number of targets
simultaneously. For instance, a static analyzer could report
more than 1000 potential targets for developers to verify in
a single version of the project [8].

When facing such a massive number of targets in the
program, one potential option is to use additional computa-
tion resources as a trade-off for better reproduction speed,
e.g., deploying multiple concurrent fuzzer instances for each

target using separate CPU core [9]. However, this could
become impractical for developers. For instance, to verify
the 1000 targets mentioned in the previous example, It is
expensive (ą24000 CPU hours, ą1000 cores) for developers
to run each target separately on an individual core within a
conventional 24-hour time budget.

Unfortunately, the state-of-the-art directed fuzzers can-
not scale well in front of such a large number of tar-
gets. Most directed fuzzers [2], [10]–[14] do not support
reproducing multiple targets simultaneously. Their success
depends on designing fine-grained feedback from analyz-
ing the single target more precisely. While certain ap-
proaches [15]–[18] have endeavored to address multiple
targets simultaneously using general feedback, e.g., aver-
age control-flow distance, their effectiveness significantly
diminishes when tackling multiple targets in comparison to
their performance on singular targets. Thus, the challenge
of efficiently fuzzing multiple targets remains. For example,
we compared the time for reproducing the same number
of targets in the Magma benchmark using the state-of-the-
art directed fuzzer, AFLGo [15] (Section 5.1). Compared to
reproducing targets separately using multiple parallel fuzzer
instances, the reproduction time significantly increases by
3.2x when attempting to reproduce all 141 targets in a
single fuzzer instance. This stark contrast underscores the
limitations of existing approaches for effectively conducting
simultaneous fuzzing across multiple targets. However, it is
crucial to note that the collective CPU time required for sep-
arately reproducing all targets surpasses the corresponding
time for reproducing them collectively within a single fuzzer
instance by a factor of 3.6x, which highlights the urgent need
to embrace a multi-target directed fuzzing approach.

We observe that one of the root causes of this challenge
is that existing approaches are unaware of the correlations
between the targets and, as a result, could degenerate to
undirected fuzzing as the number of targets grows. Even-
tually, the fuzzers cannot effectively select the seeds and
generate the inputs for multiple targets efficiently, which
we refer to as the synergy ignorance problem.

On one hand, ignoring the correlations could result in
the ineffective selection of seeds to reach specific targets.
Specifically, existing efforts [15], [19] design various one-
size-fits-all scores as the probability of reaching all targets,
e.g., average control-flow distance to the targets [15]. How-
ever, because these scores do not distinguish the hard-to-



1int foo(){
2 unsigned a,b,c,d = parse_input();
3 int flag;
4
5 if(a>5){
6 if(b>1){
7 flag=0;
8 }
9 else {

10 flag=1;
11 if(...) {...} //target-irrelevant
12 }
13 ...
14 if(flag){
15 target1();
16 }
17 else if(c>2){ //contradict to flag==1
18 target2();
19 }
20 }
21
22 if(d>3){
23 target3();
24 }
25}

Figure 1: Motivating example.

reach targets, they could innately introduce bias in seed
selection, lowering the probability of exploring targets. For
example, suppose a fuzzer attempts to detect the three targets
in Figure 1 with two seeds, Apa, b, c, dq: p6, 3, 1, 1q and
Bpa, b, c, dq: p5, 0, 3, 1q. Existing fuzzers should use seed A
to detect the three targets since A has the shortest average
control-flow distance to the three targets. However, seed
A may not be the best seed for reproducing target 1, as
mutating A could be challenging to satisfy the condition at
branches 14, flag “ 1, for target 1.

On the other hand, being unaware of the correlations
among different targets can result in massive redundant
executions due to ineffective mutation. For example, targets
1 and 3 in Figure 1 are independent because the conditions
for reaching them, a ą 5^ b ď 1 and d ą 3, are related to
different input bytes. As the fuzzer is unaware of the path
correlation, it cannot simultaneously mutate the input bytes
for a, b, and d to approach targets 1 and 3, resulting in
additional mutations for reproducing the two targets.

To tackle the synergy ignorance problem, our key insight
is that the fuzzer can leverage the correlations between
multiple targets’ feasible conditions, i.e., independence and
contradiction, to synergize input generation towards those
targets. More specifically, if we obtain the solution space
of the variables related to the given targets, e.g., d ą 3
for target 3, the fuzzer can distinguish the correlations
between the targets to precisely guide the seed scheduling
and mutation, thereby efficiently reaching multiple targets.
‚ First, the contradiction correlation indicates whether the

conditions for triggering these targets are in conflict.
Thus, we can assign distinct priorities for the seeds
satisfying the conditions of different targets. For ex-
ample, the targets 1 and 2 have conflicting conditions
on variable b (i.e., b ą 1 and b ď 1). Thus, the fuzzer
can use seed A (which satisfies b ą 1) for target 2 and
seed B (which satisfies b ď 1) for target 1 to improve

the effectiveness of seed scheduling.
‚ Second, the independence correlation indicates that

multiple input bytes could affect different targets inde-
pendently. Therefore, the fuzzer can attempt to mutate
these input bytes simultaneously to approach multiple
targets, which reduces the execution needed to reach
the targets. For example, in Figure 1, since a and d
are independent, the fuzzer can mutate their values
simultaneously for targets 1 and 3.

Based on these observations, we present a synergy-aware
directed greybox fuzzing approach for efficiently reaching
multiple targets only with one fuzzer instance. We first
discover the correlations of different targets based on the
approximation of their path conditions. We then determine
the correlations among targets by checking whether their
approximations conflict. As a result, the fuzzer can have
precise feedback for multiple targets by identifying and us-
ing the correlations instead of relying solely on the control-
flow distances. Using the new fine-grained feedback, we
introduce two optimized input generation techniques: 1)
A synergy-aware scheduling strategy that finds the seed
potentially reaching the most targets with a fine-grained
ranking of the seeds. 2) A multi-target-oriented mutation
that generates inputs for approaching multiple targets with
fewer executions needed.

We implement our approach as Titan, and compare
it with a state-of-the-art directed fuzzer, AFLGo [15], as
well as widely-used fuzzers AFL [20], AFLFast [21], and
FairFuzz [22], on both real-world programs and the state-of-
the-art fuzzing benchmark, Magma [23]. On average, Titan
achieves a 21.4x speed improvement while using 95% fewer
number of execution and triggers 2.31x more bugs than other
fuzzers. Additionally, Titan outperforms other fuzzers by
detecting nine incomplete fixes on the newest version of
the benchmark programs, two of which have been assigned
CVE IDs. Moreover, our inferred correlations can be inte-
grated with other directed fuzzers, such as Beacon [12], to
speed up fuzzing multiple targets, accelerating vulnerability
reproduction by an average of 1.5x. Titan is available at our
GitHub repository.

To sum up, we make the following contributions:

‚ We design a cheap and precise static analysis for in-
ferring the synergy to reach multiple testing targets,
enabling us to mitigate the synergy ignorance issue by
distinguishing the correlations among the targets.

‚ We propose a new feedback mechanism for multi-
targets-directed fuzzing based on the path condition
rather than the control-flow distance to schedule the
seed with better precision.

‚ We design a multi-target-oriented mutation strategy to
efficiently reach multiple targets in parallel.

‚ We provide empirical evidence that our approach is
more efficient and effective than the state-of-the-art
(directed) fuzzers and has the potential to improve the
performance of other directed fuzzers.

https://github.com/5hadowblad3/Titan


2. Background and Motivation

This section surveys recent directed greybox fuzzers
(Section 2.1) and summarizes the challenges we attempt to
resolve in this paper (Section 2.2).

2.1. Directed Grey-Box Fuzzing

Existing directed greybox fuzzing aims to test a target of
interest in a program efficiently. The intuitions proposed in
recent efforts can be categorized into two aspects: improving
directness by finding the most potential seed closer to the
target and avoiding energy waste by rejecting inputs that
cannot reach the targets.

Improving the directness. Recent mainstream of di-
rected greybox fuzzers prioritizes testing inputs so that we
can run inputs “closer” to the target in a higher priority. To
this end, multiple distance metrics have been proposed:
‚ AFLGo [15]: It takes the first step to define directed

fuzzing. It defines the distance of a testing input to
the target basic block as the average distance between
a block B and the target, where B ranges over the
blocks reached by the executed path of the input.

‚ Hawkeye [10]: It optimizes the distance metric by
considering call trace similarity, with the intuition that
a vulnerability is triggered by a sequence of call in-
structions rather than a single program point.

‚ CAFL [11]: It further improves the metric’s preci-
sion by observing that multiple predecessors should be
reached before triggering a crash. Thus, it sets all the
call sites from the crash dump of a vulnerability and
requires the fuzzer to reach them in order.

‚ MC2 [18]: It transforms directed fuzzing as a Monte-
Carlo counting model and uses the execution frequency
of each branch to approximate the difficulties in reach-
ing the targets and prioritize the seed with the lowest
difficulties in reaching the targets.

While existing efforts have improved the precision of
feedback for directed fuzzing towards a specific target, this
feedback is uniquely designed for each target and cannot
assist the fuzzer in efficiently reaching multiple targets.

Rejecting the infeasible inputs. Since there is no guar-
antee for such directness to find the most promising seed,
another trend of existing efforts proposes to reject the inputs
that are not likely to reach the targets.
‚ FuzzGuard [13]: It leverages an observation that repro-

ducing a bug needs to reach the targets. Therefore, it
trains a classifier as a predictor to filter the testing in-
puts so that inputs with a higher probability of reaching
the targets can be executed on a higher priority.

‚ Beacon [12]: It further refines the rejection in a prov-
able manner since reproducing a bug should satisfy
the path conditions. It uses static analysis to infer the
precondition for reaching the target and prunes inputs
whenever executions violate the precondition.

Even though rejecting infeasible paths could be effective,
it is orthogonal to our problem discussed in this paper.

Still, we will demonstrate the possibility of integrating this
approach with our proposed technique in Section 5.4.

2.2. Problem and Motivation

While existing efforts improve directed fuzzing to reach
one target faster, the synergy ignorance problem could still
hinder the performance from efficiently reproducing multi-
ple vulnerabilities.

On the one hand, some targets could become hard to
reach if seeds are selected based on the average control-
flow distance to all targets [10], [15]. In Figure 1, suppose
we have three seeds, Apa, b, c, dq: p6, 3, 1, 1q, Bpa, b, c, dq:
p5, 0, 1, 1q, and Cpa, b, c, dq: p3, 3, 3, 1q. Existing approaches
find the closest seed to the three targets based on control-
flow distance, e.g., the average harmonic distance between
the blocks in the executed traces and the targets [15]. Thus,
the fuzzer should choose the seed reaching the branch at
Line 16, i.e., Apa, b, c, dq: p6, 3, 1, 1q. However, mutating
seed A could not efficiently satisfy the tight conditions at
Line 6, b:r0, 1s, for target 1. If we set a higher priority
for seed C, the fuzzer could reach both targets 1 and 2
more easily by making a ą 5. Essentially, the ineffective
seed selection is because they are unaware of which targets
the seeds could attempt to cover more efficiently, thereby
wasting time approaching all of the targets blindly.

On the other hand, no existing directed fuzzers optimize
the mutation towards multiple targets. One of the main
reasons is that determining the exact relationships between
the input bytes and targets is stunningly challenging. In the
end, existing fuzzers have to be “myopic” in the mutation,
only attempting to cover new branches faced so far [16].
However, the fuzzers may waste time covering unnecessary
branches. For example, suppose seed A is chosen for target
2, and the branch at Line 11 is uncovered. Existing fuzzers
are still unsure of which branch should be covered to reach
the target faster. Therefore, covering the target-irrelevant
branch at Line 11, which is reachable to the targets in the
control flow, could introduce meaningless efforts and hinder
the efficiency of directed fuzzing.

Our observation. The main problem preventing existing
directed fuzzers from efficiently covering multiple targets
is that they do not distinguish the correlations between
different targets, primarily in the form of path condition
overlapping, conflicting, and independence, as illustrated in
Figure 2.

Overlapping and conflicting conditions for multiple tar-
gets guide the seed schedule. In Figure 1, the condition
a ą 5 is an overlapping condition for both targets 1 and 2
because reaching them both requires the condition to hold.
Thus, the overlapping condition can direct the fuzzer to
cover the true branch at Line 5, e.g., prioritizing the seeds
that are more likely to cover the branch. On the other hand,
reaching targets 1 and 2 have mutually exclusive demands
on the condition of b, namely b ď 1 and b ą 1, which we
refer to as a conflicting condition for the two targets. As a
result, we can identify the seeds satisfying b ď 1 as more



b1

Conflicting: No intersect

b > 1

Program Behavior Correlations

a5

Overlapping: Intersect

b)

a5

a > 5

a>5 a>5

a)

c)

d > 3

d

3

Independent: Different dimensions

5

Target 1 Target 2

Target 1 Target 2

Target 1 (2)

Target 2Target 1

Target 1 Target 3

Target 1
Target 3

Figure 2: Potential correlations among the targets.

likely to cover target 1. The seeds satisfying b ą 1 should
focus more on covering target 2.

Independent conditions for multiple targets facilitate effi-
cient mutation. In contrast to the “myopic” way of mutation,
directed fuzzing can be more “far-sighted” if it is aware
of the independence among the targets. In Figure 1, the
condition d ą 3 at Line 22 only influences the reachability
of target 3 but does not affect whether targets 1 and 2
are reached. Similarly, condition a ą 5 affects reaching
targets 1 and 2 but not target 3. As a result, we can
mutate the independent bytes simultaneously, which could
help approach multiple targets with fewer executions. If we
simultaneously mutate d with other bytes, such as a for
targets 1 and 2, the fuzzer can attempt to approach all three
targets in a single execution because the conditions for d
and a do not influence each other.

From the above observation, we conclude that the re-
lations of the conditions indicate the potential of detecting
multiple targets. Directed fuzzing can efficiently reach mul-
tiple targets if we can precisely reason about those relations.
First, the fuzzer can more accurately select seeds for multi-
ple targets by using conflict correlations to differentiate the
difficulties of reaching different targets, e.g., targets 1 and
2. Second, the fuzzer can generate inputs more effectively
for multiple targets by using their independent correlations,
e.g., simultaneously mutating the independent bytes b and d
for targets 1 and 3.

However, to efficiently tackle multiple targets, there are
two major challenges in utilizing the correlations between
different targets to guide the fuzzer.

Challenge 1. How to schedule multiple targets for the
seed effectively? To effectively select seeds, the fuzzer
should be aware of the correlation among different targets.
Although the correlations can reveal the relations of reaching
the targets, we still need to justify the seed potentials
for each target. Therefore, we need to design a new seed
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Target
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Figure 3: Workflow of Titan.

scheduling strategy for assessing the potential of a new seed
with respect to its influenced targets.

Challenge 2. How to generate the inputs for multiple
targets efficiently? To generate inputs for multiple targets,
the fuzzer should mutate more input bytes correlated with
multiple targets to reduce the number of executions required.
However, there may be a large number of relevant bytes for
multiple targets. Therefore, we need to efficiently identify
the input bytes for different targets and effectively prioritize
the bytes for the mutation.

3. Titan in a Nutshell

Based on the observation in Section 2.2, we present Ti-
tan, a directed fuzzer to reach multiple targets efficiently. At
a high level, our approach consists of two stages. First, we
use a static analyzer to infer the correlations among multiple
targets based on their path conditions. Second, we design a
synergy-aware fuzzer that effectively generates inputs for
multiple targets. Crucially, the correlations inferred by the
static analysis provide fine-grained feedback for both seed
scheduling and mutation.

3.1. Static Synergy Inference

Given a set of target program points, we design a two-
phase static analysis: inferring the preconditions for reaching
each target, and computing the correlations for distinguish-
ing multiple targets.

Precondition inference. First, we infer the precondi-
tions as the necessary conditions, e.g., a ą 5 in the moti-
vating example, of program variables for reaching the target
code. To facilitate computing the condition, we leverage the
interval domain [24] to over-approximate the feasible search
space of the path condition for reaching the targets, similar
to existing works [11], [12]. Formally, the static analysis
infers the following information:

Definition 3.1. (Multi-target Reachability Summary) Given
a set T Ď N of target program points, the multi-target reach-
ability summary is

Ť

tPT St where Stpnq Ď V arˆInterval,
and pv, itvq P Stpnq suggests that in order to reach the target
program point t, the variable v must fall in the interval itv
before executing the program point n P N .



Example 3.1. Consider the example shown in Figure 1. Our
static analyzer infers the multi-target reachability summary
as follows:

St1pl5q “ flag : r1, 1s, a : p5,`8q, b : r0, 1s

St2pl5q “ flag : r0, 0s, a : p5,`8q, b : p1,`8q, c : p2,`8q

St3pl5q “ d : p3,`8q

where li denotes the program location before Line i and
St1-St3 corresponds to targets 1-3, respectively.

Correlation inference. We observe that the inferred
variable ranges for different targets can have many corre-
lations. For instance, consider the multi-target reachability
summary in the above example. Reaching targets 1 and 2
both require the same range for the variable a, but they
have an exclusive demand on the range of the variable b.
Formally, we capture the observation below:

Definition 3.2. (Correlation among Multiple Targets) Sup-
pose the static analysis result is

Ť

tPT St. Given a variable
v and a program point l, we define the independence, con-
flict, and overlap relations based on whether the summaries
intersect as follows:

independentpv, l, t1, t2q
def
“ pv P St1plq ^ v R St2plqq

_ pv P St2plq ^ v R St1plqq

conflictpv, l, t1, t2q
def
“ St1plqpvq X St2plqpvq “ H

overlappv, l, t1, t2q
def
“ St1plqpvq X St2plqpvq ‰ H

Then, we can infer the correlations among multiple
targets from the multi-target reachability summary.

Example 3.2. Consider Figure 1. Targets 1 and 2 conflict
at variables b and flag since their abstractions have no
intersections, and overlap at variable a as their abstractions
are the same. We also mark the condition independent of
others, i.e., variable c is uniquely constrained for target 2.
Overall, we formally define the correlations as follows:

overlappa, l5, t1, t2q, conflictpb, l5, t1, t2q

independentpc, l5, t1, t2q, independentpd, l5, t1, t3q

independentpd, l5, t2, t3q

Usage of the synergy through instrumentation. We
can instrument the program with the computed correlations
to provide fine-grained feedback for fuzzing. Specifically,
when reaching a program point n, we check whether the
variable v defined before n may affect the reachability
of the targets, e.g., t1, t2, based on the correlations in
Definition 3.2. For example, in Figure 1, suppose the
execution reaches Line 5. We can use the correlation,
conflictpb, l5, t1, t2q “ true, to know that the variable b
defined at Line 2 influences targets 1 and 2. Thus, the fuzzer
is aware that the current seed is easier to reach one of
the targets (1 or 2) because the seed already satisfies the
condition, which further helps determine the seed’s potential
and how to mutate the seed.

3.2. Synergy-guided Directed Fuzzing

With the inferred correlations, the fuzzer can have fine-
grained feedback as guidance for both seed scheduling
and mutation. Specifically, we aim to fuzz multiple targets
simultaneously by tackling the two challenges mentioned
above respectively:

Synergy-aware seed scheduling. To address Chal-
lenge 1, a directed fuzzer should know the correlations
among the targets to select the seeds precisely. In Titan, we
utilize the correlations to (1) identify which targets should be
focused on by a given seed and (2) measure the difficulties
of reaching them.

First, we identify the targets a seed should consider
based on the intuition illustrated in Figure 2. Specifically, if
the variables reached belong to the overlap or independent
correlations (as shown in a) and c) in Figure 2), we consider
the seed could reach these targets because the intersected
search space indicates that they could be covered simulta-
neously. We use the conflict correlation to filter the targets
for the current seed: If a target’s precondition is not satisfied
by the current seed, we can temporarily exclude that target
from consideration.
Example 3.3. Consider two seeds Apa, b, c, dq: p6, 3, 1, 1q
and Bpa, b, c, dq: p6, 0, 1, 1q. We propose that the fuzzer
should use them for targets 1 and 2, respectively, according
to the conflicts in the correlation, conflictpb, l5, t1, t2q in
Figure 1. We recognize that A is more likely to trigger target
2 whereas B is more likely to trigger target 1, based on the
values of b observed in the executions of the seeds, which
satisfy distinct conditions in the conflict correlation.

Second, we need to prioritize the focused targets for the
seeds because reaching each target could vary in difficulty.
Specifically, we regard reaching a target as satisfying its
conditions on multiple variables in the correlations. The seed
input whose value satisfies the conditions for most variables
should be prioritized. Therefore, we analyze the execution
feedback to check the number of preconditions met during
the executions. For example, in the previous example, we
prioritize B over A since B satisfies the preconditions of
two variables, a and b for target 2, while A only satisfies
the precondition of one variable, a, for target 1. Therefore,
with a fine-grained feedback measurement, we can select
the most promising seed to cover multiple targets.

Multi-target-oriented mutation. To solve Challenge 2,
we mutate the seed for approaching multiple targets at each
run to reduce redundant executions. Recall that some bytes
could be mutated simultaneously to reduce the number of
executions needed for reaching multiple targets, i.e., a and
d in Figure 1. To achieve this, we leverage the independent
correlation to mutate multiple bytes related to independent
variables. Specifically, we first dynamically infer the input
bytes that can influence the values of the variables in the
independent correlations using inference-based taint analy-
sis [22], [25], [26]. Then, we mutate the bytes that influence
the independent variables respectively, enabling the fuzzer
to approach multiple targets with fewer mutations.



Algorithm 1 Static Reachability Inference

Input: An inter-procedure control flow graph, G
Input: A set of targets, T
Output: Multi-target reachability summary

Ť

tPT St

1: procedure ABSTRACTIONINFERENCE(G, T )
2: res ÐH

3: for all t P T do
4: St ÐH

5: while v1
stmt
ÝÝÝÑ v P ReverseDFSpG, tq do

6: Strv
1s “ Strv

1s
Ů

transferpStrvs, stmtq
7: end while
8: res Ð res Y St

9: end for
10: return res
11: end procedure

Example 3.4. For the seed, Apa, b, c, dq: p6, 3, 1, 1q, we
can infer that the input bytes for variables used in the
branch at Lines 5 and 22 are controlled by different bytes
from a and d. Thus, we inform the fuzzer to mutate them
simultaneously, which increases the probability of reaching
targets 2 and 3 with less execution needed than mutating
them separately.

Furthermore, as the number of targets considered in-
creases, input bytes could influence these targets differently.
Hence, to expedite the process of reaching multiple targets,
we can further prioritize these input bytes for mutation.

4. Methodology

In this section, we first present our static analysis al-
gorithm for inferring the multi-target reachability summary
(Definition 3.1) in Section 4.1. We then detail how to lever-
age the correlation inferred from the summary to improve
seed scheduling in Section 4.2 and generate inputs for
multiple targets in Section 4.3.

4.1. Static Synergy Inference

Algorithm 1 presents our static analysis for inferring the
preconditions to reach multiple targets. At a high level, the
analysis traverses the inter-procedural control flow graph G
backward, starting from the target location t (denoted by
ReverseDFSpG, tq), during which it maintains and updates
the preconditions for different program locations to reach
the target t. More precisely, for each program point v1,
the algorithm computes an abstraction of the precondition
for reaching t by iteratively applying the semantic transfer
function transfer of each program statement stmt (Lines
5-7). We refer the reader to existing works [12] for the
design and implementation of the transfer functions.

Based on the computed multi-target reachability sum-
mary, we can obtain the correlations among multiple targets
for a seed according to Definition 4.1.

Definition 4.1. (Correlations of a seed) Given a seed,
S, suppose S reaches a set of program locations

Algorithm 2 Influential Targets Inference

Input: A seed S,
Input: A set of targets T
Output: Targets should be considered by the seed, Tres

1: procedure TARGETCLUSTERING(S, T )
2: Tres, Tconf , Tind ÐH

3: CpSq Ð getCorrelationpsq
4: for all correlation P CpSq do
5: if correlation ““ overlappv, l, ti, tjq then
6: Tres Ð Tres Y tti, tju
7: end if
8: if correlation ““ conflictpv, l, ti, tjq then
9: if concrete value of v satisfies Stiplqpvq then

10: Tres Ð Tres Y ttiu
11: Tconf Ð Tconf Y ttju
12: end if
13: end if
14: if correlation == independentpv, l, ti, tjq then
15: Tind Ð Tind Y tpti, tjqu
16: Tres Ð Tres Y tti, tju
17: end if
18: end for
19: Tres Ð TreszTconf

20: Tres Ð Tres Y tt
1| t P Tres, pt, t

1q P Tindu

21: return Tres

22: end procedure

pv1, l1q, ..., pvn, lnq, where variable, vi, is defined at loca-
tion, li. The set of correlation, CpSq, of the seed S is:

CpSq
def
“ trpvi, li, tj , tkq|

i P p1, nq, r P tindependent, conflict, overlapuu

where ptj , tkq is a pair of targets.

4.2. Synergy-aware Seed Scheduling

To find the seed that could reach the most targets, we
first determine which targets should be considered by each
seed based on the inferred correlations. Then, we measure
the potential for each seed to reach these targets. Since seeds
discover a different part of the program, their focused targets
could vary based on the reached parts of the program. There-
fore, we need to adaptively determine the related targets for
a seed S according to its reached correlations CpSq.
Example 4.1. If a seed does not reach Line 6 in Figure 1,
no conflict relation for targets 1 and 2 is established. In this
case, the fuzzer can use those seeds, e.g., seeds reaching
Line 5 with a ă 5, to approach the two targets. However,
if the seeds reach Line 6, e.g., Apa, b, c, dq: p6, 3, 1, 1q and
Bpa, b, c, dq: p6, 0, 1, 1q, the fuzzer should be aware of the
conflict correlation and distinguish the seeds for different
targets, i.e., seed B not satisfying the condition b ą 1 at
Line 6 needs more mutations to reach target 2 than seed A.

Determine the targets influenced by seeds. As men-
tioned in the previous section, our basic intuition is that a



Table 1: Example of how Titan determines the targets in-
fluenced by seed through checking the reached correlation
during the execution. We use a seed, pa, b, c, dq: p6, 3, 1, 1q
on the program in Figure 1.

Line Condition Abstractions Values Influence Targets

5 a ą 5 a1, a2: r6,`8q a “ 6 Tres “ t1, 2u
6 b ą 1 b1: p´8, 1s, b2: r2,`8q b “ 1 Tconf “ t2u

14 flag ‰ 0 flag1: r1,`8s, flag2: r0, 0s flag “ 0 Tconf “ t2u
22 d ą 3 d3: r4,`8q d “ 1 Tind “ tpt1, t3q, pt2, t3qu

seed should focus on targets with more satisfied conditions
but not solve the condition for all targets simultaneously.
Therefore, not all targets should be considered by a seed.
Since the conflict correlation indicates the contradiction of
the two targets, we regard one of them as irrelevant to the
current seed during the scheduling.

Specifically, Algorithm 2 determines each seed’s af-
fected targets, Tres, according to its correlation. We first
obtain the correlation of the seed, Cpsq, to decide the targets
this seed should focus on (Line 3). Based on correlations in
Cpsq, we distinguish the targets according to whether they
are overlapping, conflicting, or independent. If the targets
are overlapped or independent of each other (Lines 5-7,
Lines 14-17), they can be fuzzed synergistically, i.e., they
should be considered by the current seed (Lines 6 and
16). On the other hand, if two targets are conflicting at a
program location (Lines 8-13), the seed should only consider
the target whose condition is satisfied by the intermediate
values and discard the other (Lines 9-12, assuming ti is the
satisfied target). Additionally, we regard any target that is
independent of targets in Tres as a potential target of the
seed, but remove any conflicting targets (Lines 19-20).
Example 4.2. We use the seed Apa, b, c, dq: p6, 3, 1, 1q in
Figure 1 to demonstrate the process in Table 1. We record
the correlations discovered during executing the seed A to
determine which target seed A should focus. Specifically,
the overlap correlation at Line 5 adds targets 1 and 2; the
conflict correlation at Lines 6 and 14 filters target 1; the
independent correlation at Line 22 adds target 3. Therefore,
we can use seed A to reach targets 2 and 3.

Determine the potential to reach the influenced tar-
gets. Besides identifying the affected targets for each seed,
we also need to determine the potential to reach these
targets and prioritize them for fuzzing. To this end, we
propose to leverage the satisfied preconditions used in the
correlations instead of using control-flow-based distance to
have better precision for the measurement. Intuitively, the
more preconditions in the summary that a target has to
satisfy, the more challenging it will be to reach the target.
Example 4.3. The seed A satisfying a ď 5 ^ b ą 1 ^
c ą 2 could reach targets 1 and 2 faster than the seed B
with a ą 5 ^ b ď 1 ^ c ă“ 2 because the fuzzer only
needs to mutate a. In contrast, the methods using control-
flow distance would favor seed B, because covering the true
branch of Line 5 makes the seed closer to the targets.

Thus, we measure the potential of a target t to be reached
by a seed (denoted potentialptq) using the proportion of the

precondition satisfied in the execution:

potentialptq “

#

0 if t has been triggered
nptq
Nptq otherwise

(1)

where nptq is the number of satisfied preconditions for t
observed when executing the seed input, and Nptq is the
total number of preconditions inferred statically for t. The
higher the potential value of a seed for a given target, the
better the seed is for reaching the target.

With the potential for each target, we accumulate them
for a seed s to measure the likelihood of reaching them
defined as:

potentialpsq “
ÿ

tPTres

pptq (2)

Example 4.4. The potential of seed A in the previous
example to reach target 2 is 3

4 “ 0.75 since there are four
preconditions for target 2 (a, b, c and flag) and three of
them are satisfied by A. The overall potential for seed A is
potentialpt2q ` potentialpt3q “ 0.75` 1 “ 1.75.

Remark 1. To effectively select seeds for multiple targets,
we differentiate the seeds for different targets using the cor-
relations rather than designing a one-size-fits-all score for all
targets as in existing works [10], [11], [15]. Furthermore, we
utilize the correlations to measure the potential of reaching
the targets regarding the solution space. Admittedly, quanti-
fying the exact solution space is stunningly challenging for
real-world programs [27]–[29]. We use the approximation
of the solution space from existing work [12], which, albeit
may suffer from imprecision, is more fine-grained than the
control-flow-based distance.

4.3. Multi-target-oriented Mutation

To efficiently generate inputs for multiple targets, we
propose mutating multiple bytes simultaneously for different
targets. Specifically, we first infer the bytes influencing
different targets to determine which can be mutated simulta-
neously. We then prioritize mutating those bytes that could
reach more targets.

Inferring the influenced bytes. Intuitively, the variables
in the independent correlations could be changed simulta-
neously to approach different targets. Therefore, if these
variables’ values depend on different bytes, the fuzzer can
mutate them simultaneously to generate inputs for multiple
targets. Based on this intuition, we formally define the bytes
that can be simultaneously mutated as follows:

Definition 4.2. (Independent Byte) Given a seed S and a
target program point t, Let Bt be the set of bytes that affects
the reachability of t, i.e., the set of bytes controlling the
values of variables in CpSq. We define the bytes, Bind that
are independent based on whether they are uniquely served
for a target as follows:

Bindpti, tjq
def
“ pBti YBtj q ´ pBti XBtj q
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Figure 4: The intuition of mutating the independent bytes
to improve the efficiency of input generation. If bytes 1
and 3 are mutated simultaneously, fuzzers could satisfy both
conditions for three targets with fewer executions.

Independent bytes have the potential to be mutated si-
multaneously for multiple targets. For example, in Figure 4,
suppose that that bytes 1 and 2 control the conditions at
Line 5, and bytes 2 and 3 control those at Line 22 in
Figure 1. Based on Definition 4.2, the independent bytes are
1 and 3. Simultaneously mutating these bytes increases the
possibility of satisfying both conditions for multiple targets,
thereby reducing the number of executions to reach them.

However, precisely identifying the independent bytes,
Bind, for each seed can be computationally expensive. Thus,
we adapt the inference-based taint analysis [22], [25], [30]
to estimate the independent bytes. The intuition is that
mutating the independent bytes should not change the values
of variables in the correlations for different targets. Unlike
existing works that examine every input byte for one target
at a time, we employ a lazy approach that infers the bytes
only for the variables in the correlations. Specifically, we
gradually remove the bytes that cannot be independent for
different targets. This reduces substantial runtime overhead
when the number of targets increases in conventional meth-
ods.

We start by assuming that all bytes are related to the
targets and record the variable values in the correlations
when preserving the seeds. During the inference-based taint
analysis, we track the bytes that simultaneously modify
the variable values of the targets in Tind identified by
Algorithm 2 as non-independent bytes.
Example 4.5. Suppose we mutate bytes 2 of the seed shown
in Figure 4. In that case, the new input could simultaneously
modify the values of two variables, a and d, for multiple
targets. Therefore, byte 2 cannot be an independent byte
and should not be modified simultaneously with other bytes
during fuzzing.

Mutating bytes for multiple targets. While multiple
targets exist in the program, each byte could influence a dif-
ferent number of targets. Therefore, instead of mutating each
byte with equal quality, we propose prioritizing the bytes
that can influence the most non-triggered targets, which
could make the input generation more effective towards
multiple targets.

Our basic intuition is to prioritize the bytes according to
how many targets it can influence. This is achieved through
an adaptive approach, where we first infer the bytes for each

target and then mutate the input bytes for its focused targets
indicated by the Tres defined in Section 4.2. For each byte, b,
of seed, S, we measure the number of its influenced targets
that have not been triggered as infpbq. We choose the bytes
with probability, p, defined as follows:

ppbq “
infpbq

ř

biPS
infpbiq

(3)

We then mutate the independent bytes of the chosen one
simultaneously by querying the targets in Tind.
Example 4.6. The input byte 1 in Figure 4 can be chosen
with a probability of 2

2`3`1 « 0.33, while byte 2 influencing
more targets could be chosen with a higher probability
of 3

2`3`1 “ 0.5. Since targets 1 and 3 are independent
according to Tind, Titan could mutate byte 3 for target 3 if
byte 1, on which target 1 depends, is chosen.

Remark 2. Our approach has a flavor of dynamic taint
analysis as we infer the relevant bytes of the targets. Dif-
ferent from the existing usage [22], [25], [26], we lazily
infer the bytes to reduce the overhead because we do not
need to go through every byte for every target. Meanwhile,
our approach helps to mitigate the under-taint issue [31]
in the conventional methods, as we will not remove the
bytes that do not change the intermediate values toward the
targets. Note that we do not claim to optimize the concrete
mutation operators as previous efforts [22], [25], [26], [32],
but instead guide the mutation by finding the bytes that can
be mutated simultaneously with higher potential. Overall,
apart from the original bytes chosen by the fuzzer, we pick
extra bytes and conduct mutations to increase the probability
of approaching multiple targets in one run.

5. Evaluation

We implemented Titan, a greybox fuzzer with a cor-
relation analyzer and an instrumentation component, based
on LLVM [33]. As shown in Figure 3, we first compile
the input source code to LLVM bitcode, on which the syn-
ergy analysis and the instrumentation for runtime feedback
are performed. After instrumentation, the LLVM bitcode is
compiled into an executable binary, which can be integrated
with various fuzzing engines, such as AFLGo [15] and
Beacon [12]. By default, we use AFL 2.57 [20] as the
fuzzing engine.

In this section, we evaluate the effectiveness of Titan by
investigating the following research questions:
‚ RQ1: How efficiently can Titan reproduce the vulner-

abilities compared with other fuzzer? (Section 5.1)
‚ RQ2: How effectively do the correlations inferred by

Titan help reproduce the vulnerabilities? (Section 5.3)
‚ RQ3: How effectively can Titan help other directed

fuzzing for multiple targets? (Section 5.4)
‚ RQ4: What is the runtime overhead brought by Titan?

(Section 5.5)
Baselines. We compare Titan with the fuzzers listed in

Table 2. AFLGo [15] and Beacon [12] are two state-of-the-



Table 2: Compared fuzzers.

Fuzzer Category Description

AFLGo [15] Directed Sophisticated seeds prioritization
Beacon [12] Directed Rejecting infeasible execution

Parmesan [16] Coverage Guide fuzzer using the sanitizer labels
AFL [20] Coverage Evolutionary mutation strategies
AFL++ [34] Coverage AFL with multiple optimizations from the community
FairFuzz [22] Coverage Mutation with crucial bytes fixed
AFLFast [21] Coverage Power scheduling with Markov chain
Entropic [35] Coverage Power scheduling with information entropy

art directed gray-box fuzzers. Since AFLGo supports mul-
tiple targets, we use AFLGo-Multi to indicate the version
that fuzzes all the targets simultaneously and AFLGo-Single
to indicate the version that reaches each target individually.
Beacon is a state-of-the-art directed fuzzing by early termi-
nating the infeasible execution. We choose AFL [20] and
AFL++ [34], the fundamental greybox fuzzer and its up-
dated versions, as the baseline. We further choose three grey-
box fuzzers that optimize the seed scheduling with proper
energy assigned [21], [35] and mutation strategies [16], [22]
for more reliable comparison. Their technical details are
mentioned in Section 6. For each coverage-guided fuzzer,
we follow the configuration provided by Magma.1 We also
planned to compare with FuzzGuard, Hawkeye, MC2, and
CAFL. However, none of these tools is publicly available.
Thus, we exclude them from our experiment.

Benchmarks. We have chosen two benchmarks to eval-
uate Titan.

First, to answer the research questions, we use the state-
of-the-art benchmark, Magma [23], which consists of vari-
ous CVEs chosen from nine programs frequently evaluated
in the state-of-the-art fuzzing, with diverse functionalities
as shown in Table 3. We do not use the benchmark lua
since it is newly added in the Magma, and no state-of-the-
art directed fuzzers can correctly deploy on this program.
For each vulnerability, we follow the instructions of the
benchmark to set the last program location where the crash
is triggered as the target. Meanwhile, Parmesan also cannot
work on sqlite3 and PhP. We have required assistance
from the developers of Magma and Parmesan, who told us
the improvements could be made in the future. However,
since no further action has been conducted, we have tem-
porarily excluded these programs from our comparison.

Second, to show the effectiveness of Titan for effectively
reproducing real vulnerabilities and detecting incomplete
fixes, we also reproduce the CVEs in the newest version
of the program used in both Magma and the state-of-the-art
directed fuzzing [10]–[13], [15].

Configurations. The initial seed corpus heavily affects
the effectiveness of fuzzing [36]. To reduce bias, we use
the seeds provided in the Magma benchmark. For each
experiment, we conducted ten trials. Each trial has a 24-hour
time budget, as indicated by the benchmark [23]. We use the
Mann-Whitney U Test [37] to demonstrate the statistical
significance of our framework’s contribution. Additional
configuration details are provided in the related experiments.

1. https://github.com/HexHive/magma/tree/v1.2/fuzzers

Table 3: Benchmark programs in Magma and the static
analysis time (s) used for preprocessing.

Project libpng libsndfile libtiff libxml2 openssl poppler sqlite3 php

Size/Target 95K/7 83K/25 95K/14 320K/17 630K/20 260K/22 387K/20 1.6M/16
Titan 56 140 268 2279 31256 19015 3819 55803
AFLGo 103 542 2230 5608 21492 13487 12588 43052

All experiments are conducted on an Intel Xeon(R)
computer with an E5-1620 v3 CPU and 64GB of memory,
running Ubuntu 20.04 LTS.

5.1. Efficiency in Reproducing Vulnerabilities

The main goal of directed fuzzing is to reproduce the
vulnerabilities efficiently. Thus, we first compare Titan with
the state-of-the-art fuzzers mentioned in Table 3. We run
each fuzzer ten times and measure the average time to
reproduce the marked bugs in the Magma benchmark.

The results are shown in Tables 4 and 5, which list all
the targets found by the evaluated fuzzers.

Comparing the evaluated directed fuzzers, we make the
following observations:
‚ For most targets, Titan shows a significant improvement

with p-values less than 0.05. On average, Titan outper-
forms the state-of-the-art directed fuzzers with 13.7x
improvement while detecting ten more targets than the
compared fuzzers.

‚ AFLGo-Multi could take 3.2x more time than AFLGo-
Single to reproduce each target, indicating the bias
in AFLGo caused by the synergy ignorance issue.
Nevertheless, AFLGo-Single needs 3.6x more accu-
mulative CPU time to reproduce these targets than
AFLGo-Multi, demonstrating the necessity of multi-
target directed fuzzing.

‚ While some single-target fuzzers, such as AFLGo-
Single and Beacon, outperform Titan for specific tar-
gets, the average reproduction speed of Titan is faster
than AFLGo-Single and Beacon, with 9.1x and 3.2x
speedups, respectively.

‚ Titan exhibits better accumulative performance with
11.5x improvement on average compared with AFLGo-
Multi, AFLGo-Single, and Beacon, highlighting the
effectiveness of Titan as a multi-target directed fuzzing.

Compared with the non-directed fuzzers, Titan detects
12 more bugs with 25x speed improvement on average,
showing the effectiveness of Titan as a multi-target directed
fuzzer. We study the reason that AFLFast and Entropic
achieve better results in two cases, SND017 and PHP011.
We find that Titan introduces a minor time cost when
using the inference-based taint analysis to find the bytes
that can be mutated simultaneously. Still, Titan detects 12
and 18 more bugs with 14.9x and 3.3x speedup compared
with AFLFast and Entropic, respectively. We also observe
that AFL++, integrating AFL with multiple state-of-the-art
techniques, outperforms AFL by finding 11 more targets,
though its performance may not be stable in some targets,
e.g., SND006.



Table 4: Reproduction time for each target in Magma. The Time indicates the reproduction time (second) averaged over ten
runs. T.O. indicates the fuzzer cannot reproduce the targets within the given time budget, 24 hours. Ratio and p indicates
the improvement ratio and p-value compared with Titan. H indicates that the fuzzer cannot deploy in the project.

Bug ID Titan AFLGo-Multi AFLGo-Single Beacon Parmesan AFLFast FairFuzz AFL AFL++ Entropic
Time T ime Ratio p T ime Ratio p T ime Ratio p T ime Ratio p T ime Ratio p T ime Ratio p T ime Ratio p T ime Ratio p T ime Ratio p

PNG003 15 15 1.0x 0.03 15 1.0x 0.04 20 1.3x ă0.01 44 2.9x - 15 1.0x 0.03 15 1.0x 0.03 15 1.0x 0.03 21 1.4x 0.01 18 1.2x 0.02
PNG007 28591 68058 2.4x ă0.01 63515 2.2x 0.01 57100 2.0x ă0.01 T.O. N.A - T.O. N.A - 45304 1.6x 0.01 69243 2.4x 0.01 46021 1.6x ă0.01 80605 2.8x ă0.01
SND001 524 T.O. N.A - T.O. N.A - 536 1.0x 0.04 T.O. N.A - 79799 152.3x ă0.01 T.O. N.A - 84960 162.1x ă0.01 1017 1.9x 0.01 T.O. N.A -
SND005 39 10357 265.6x ă0.01 999 25.6x ă0.01 42 1.0x 0.04 T.O. N.A - 2618 67.1x ă0.01 29281 748.7x ă0.01 1633 41.9x ă0.01 5105 130.9x ă0.01 T.O. N.A -
SND006 611 T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - 80777 132.2x ă0.01 T.O. N.A - 15856 26.0x ă0.01 T.O. N.A -
SND007 609 T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - 80146 131.6x ă0.01 T.O. N.A - 4772 7.8x ă0.01 T.O. N.A -
SND017 825 8336 10.1x ă0.01 3769 4.6x ă0.01 1352 1.6x ă0.01 T.O. N.A - 248 0.3x - 86219 104.5x ă0.01 3148 3.8x ă0.01 1107 1.3x 0.01 T.O. N.A -
SND020 5321 78007 14.7x ă0.01 T.O. N.A - 3491 0.7x - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - 2585 0.5x - T.O. N.A -
SND024 607 T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - 80777 133.1x ă0.01 T.O. N.A - 4392 7.2x ă0.01 T.O. N.A -
TIF002 79027 T.O. N.A - 81827 1.0x 0.01 T.O. N.A - T.O. N.A - T.O. N.A - 81614 1.0x 0.03 T.O. N.A - 80966 1.0x 0.03 T.O. N.A -
TIF006 78717 82787 1.1x ă0.01 79175 1.0x 0.04 52149 0.7x - 79631 1.0x 0.03 T.O. N.A - T.O. N.A - 78942 1.0x 0.04 21715 0.3x - T.O. N.A -
TIF007 187 18252 97.6x ă0.01 5562 29.7x ă0.01 250 1.3x 0.01 2003 10.7x ă0.01 770 4.1x ă0.01 644 3.4x ă0.01 4176 22.3x ă0.01 210 1.1x 0.03 3396 18.2x ă0.01
TIF009 69305 74482 1.1x 0.02 61443 0.9x - 53560 0.8x - T.O. N.A - 72149 1.0x 0.03 76534 1.1x 0.02 75359 1.1x 0.04 65557 1.0x - T.O. N.A -
TIF012 2569 33250 12.9x ă0.01 27796 10.8x ă0.01 3686 1.4x ă0.01 52250 20.3x ă0.01 3585 1.4x ă0.01 3312 1.3x ă0.01 6842 2.7x ă0.01 4282 1.7x 0.01 T.O. N.A -
TIF014 2696 57240 21.2x ă0.01 38140 14.2x ă0.01 4709 1.8x ă0.01 T.O. N.A - 13994 5.2x ă0.01 76364 28.3x ă0.01 47372 17.6x ă0.01 12648 4.7x ă0.01 T.O. N.A -

XML003 60000 T.O. N.A - T.O. N.A - 75004 1.3x ă0.01 65379 1.1x 0.01 T.O. N.A - T.O. N.A - T.O. N.A - 63381 1.0x 0.03 82657 1.4x 0.01
XML009 3427 T.O. N.A - T.O. N.A - 6077 1.8x ă0.01 70335 20.5x ă0.01 50644 14.8x ă0.01 T.O. N.A - T.O. N.A - 4897 1.4x ă0.01 19803 5.8x ă0.01
XML017 21 22 1.0x 0.03 21 1.0x 0.04 46 2.2x ă0.01 53 2.4x ă0.01 23 1.0x 0.03 23 1.0x ă0.01 22 1.0x 0.04 41 2.0x 0.02 21 1.0x 0.04
SSL001 42260 T.O. N.A - T.O. N.A - 33937 0.8x - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - 26207 0.6x - T.O. N.A -
SSL003 382 T.O. N.A - T.O. N.A - 527 1.4x 0.01 401 1.0x 0.03 398 1.0x 0.04 389 1.0x 0.04 393 1.0x 0.04 470 1.2x 0.03 385 1.0x 0.04
SSL020 78986 T.O. N.A - T.O. N.A - 83335 1.1x ă0.01 T.O. N.A - T.O. N.A - 79877 1.0x ă0.01 T.O. N.A - T.O. N.A - T.O. N.A -
PDF003 73612 T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - 82152 1.1x 0.02 T.O. N.A -
PDF010 7501 17536 2.3x ă0.01 23002 3.1x ă0.01 T.O. N.A - T.O. N.A - 40507 5.4x ă0.01 23592 3.1x ă0.01 13259 1.8x 0.01 7512 1.0x 0.03 7813 1.0x 0.04
PDF018 35396 T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - T.O. N.A - 51783 1.5x ă0.01 79742 2.3x 0.01
SQL002 11477 62739 5.5x ă0.01 37761 3.3x ă0.01 10209 0.9x - H 20146 1.8x ă0.01 65013 5.7x ă0.01 42315 3.7x ă0.01 15601 1.4x ă0.01 30770 2.7x -
SQL014 70950 80432 1.1x 0.02 81419 1.2x 0.04 75868 1.1x 0.01 H 77984 1.1x 0.03 T.O. N.A - T.O. N.A - 63845 0.9x - T.O. N.A -
SQL018 39017 76433 2.0x ă0.01 56886 1.5x ă0.01 45515 1.2x ă0.01 H 75473 1.9x ă0.01 78600 2.0x ă0.01 74737 1.9x ă0.01 41364 1.1x 0.02 66385 1.7x 0.03
PHP004 103 1772.5 17.2x 0.01 451 4.4x ă0.01 3980 38.6x ă0.01 H 107 1.0x 0.02 436 4.2x ă0.01 136 1.3x ă0.01 57470 558.0x ă0.01 T.O. N.A -
PHP009 636 11469 18.0x 0.01 34390 54.1x ă0.01 5718 9.0x ă0.01 H 2572 4.0x ă0.01 T.O. N.A - 39842 62.6x ă0.01 30599 48.1x ă0.01 T.O. N.A -
PHP011 49 2087 42.6x ă0.01 230 4.7x ă0.01 41 0.8x - H 206 4.2x ă0.01 12019 245.3x ă0.01 110 2.2x ă0.01 2949 60.4x ă0.01 23 0.5x -

Avg. ą28.7x ą9.1x ą3.2x ą7.4x ą14.9x ą77.6x ą18.4x ą30.3x ą3.3x

Table 5: Accumulative CPU time for detecting all targets
mentioned in Table 4 using directed fuzzers. Max indicates
the maximal time for finding the last targets using multi-
target directed fuzzers. Sum indicates the accumulative time
for finding all targets using single-target directed fuzzers.
Ratio is the improvement ratio compared with Titan.

Project Titan AFLGo-Multi AFLGo-Single Beacon
Max Max Ratio Sum Ratio Sum Ratio

libpng 28591 68058 2.3x 63530 2.2x 57120 2.0x
libsndfile 5321 86400 16.2x 436768 82.1x 267380 50.2x

libtiff 79027 86400 1.1x 293243 3.7x 200754 2.5x
libxml2 60000 86400 1.4x 172820 2.9x 81127 1.4x
openssl 78986 86400 1.1x 259200 3.3x 117799 1.5x
poppler 73612 86400 1.2x 195802 2.7x 259200 3.5x
sqlite3 70950 80432 1.1x 176066 2.5x 131592 1.9x

php 636 11469 18.0x 35071 55.1x 9739 15.3x

Avg. 5.3x 19.3x 9.8x

In terms of the pre-analysis time, Titan requires no more
than half an hour to analyze each target in the evaluation
benchmark shown in Table 3. Compared with AFLGo, while
Titan may require longer pre-analysis for larger programs,
e.g., openssl and php, it is acceptable because the anal-
ysis time could be spent offline, and Titan saves more time
during the fuzzing period. Furthermore, we can optimize
the pre-analysis time via incremental or compositional static
analysis techniques. Since it is orthogonal to the problem
solved by this work, we will address it in future work.

5.2. Incomplete Fix Detection Ability

Moreover, we also evaluate the effectiveness of Titan in
detecting incomplete fixes of the previously reported bugs
in the newest version of the programs. To conduct this
evaluation, we evaluate all the projects mentioned in existing
directed fuzzers [10]–[13], [15] to examine whether Titan
can identify the incomplete fixes in the newest version of
the evaluated programs.

We show the results in Table 6, which include all the
previously unseen bugs detected by Titan. Specifically, Titan

Table 6: Projects evaluated in existing directed fuzzing with
the bugs detected. Nbug represents the number of bugs
detected. Status represents whether the bug is a new one
or an incomplete fix of a previous bug or CVE.

Project Evaluated Fuzzer Nbug NAFLGoMulti NAFLGoSingle Category

libpng Magma, [10], [11], [13], [15] 1 0 0 New
libtiff Magma, [11], [13], [15] 1 0 0 Incomplete fix

poppler Magma, [12], [13] 3 0 1 Incomplete fix
binutils [10]–[13], [15] 1 0 0 Incomplete fix

tcpreplay [13] 1 0 0 Incomplete fix
bento4 [11], [13] 5 0 1 Incomplete fix

detects nine incomplete fixes and one new bug that existing
efforts cannot detect, two of which have been assigned CVE
IDs. In contrast, AFLGo-Multi cannot find any bugs in the
newest version of the projects compared with two found
by AFLGo-Single, highlighting the existence of the synergy
ignorance problem. By addressing this issue, Titan detects
12 more bugs than AFLGo-Multi. Moreover, the coarse-
grained distance feedback used in AFLGo-Single prevents
it from detecting the vulnerabilities that Titan does with
the precondition feedback. To illustrate the effectiveness of
Titan, we further provide a case study in Section 5.6. The
links to all bug reports can be found here.

5.3. Effectiveness of the Correlation Inference

Having evaluated the key ability of Titan in reproducing
multiple targets, we further study the strategies of Titan with
an ablation study. We first conduct a general comparison
using two variants of Titan by disabling the synergy-aware
scheduling and multi-target-oriented mutation, which we
denote as Titan-m and Titan-s, respectively. We used the
same evaluation setting in the previous experiment. Accord-
ing to the results in Figure 5, Titan outperforms Titan-m
and Titan-s to reproduce the targets with 1.31x and 1.28x
times improvement. We then conduct further analyses of our
designed method.

How does the synergy-aware scheduling help di-
rected fuzzing for multiple targets? We first study how

https://www.notion.so/5e37e00d85d8458793ef71c61592c3dd?v=e1a3c943e5d34067805952b5822ffd3d&pvs=4
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Figure 6: Distribution of the seed chosen for the targets in
Libpng compared with AFLGo.

synergy-aware scheduling helps directed fuzzing find the
most promising seed. We examine how many correlations
exist in the evaluated projects and their proportions in the
program. The presence of more correlations means that the
feedback provided to the fuzzer can be more precise, helping
it distinguish between different seeds for multiple targets.

The results are shown in Table 7. Overall, Titan detects
an average of 41739 correlations in each program, with 4360
overlaps, 1739 conflicts, and 35640 independent relations.
The large numbers demonstrate the necessity of considering
the relations among multiple targets. Additionally, the num-
ber of relations constitutes only 6.3% of the instructions that
need to be instrumented on average. Compared to the 13.7%
instrumentation ratio in distance-based directed fuzzers, our
correlations can provide fine-grained feedback for reaching
multiple targets with less instrumentation. Moreover, we
study the distribution of the seeds chosen for different targets
in Libpng with AFLGo in Figure 6. Titan explores the
targets more evenly, while AFLGo only focuses on exploring
part of the targets, e.g., PNG007, Therefore, Titan has a
higher chance of detecting more bugs in the programs, which
indicates the effectiveness of synergy-aware scheduling.

How does multi-target-oriented mutation minimize
the executions for multiple targets? Next, we study the
improvement brought by multi-target-oriented mutation. In-
tuitively, Titan-m should reproduce multiple targets faster
with few mutations since we mutate the bytes for different
targets. Therefore, we evaluate the executions needed to
reproduce the Magma targets.

Figure 7 shows the results. On average, Titan uses 95.0%
fewer number of executions than AFLGo to reproduce the
targets. Interestingly, the range of the executions needed for
AFLGo could fluctuate wider than Titan in the same project,
indicating the potential of using correlation to mutate for
different targets synergistically.

Table 7: The number of variables found in the overlap,
conflict, and independent correlations in each project from
Magma. Size NI{NB indicates the size of each project,
where NI and NB indicate the number of instructions and
blocks in the LLVM IR.

Project Size NI{{{NB Overlap Conflict Independent

libpng 49352 / 6882 132 178 3275
libsndfile 152409 / 16726 738 540 5771

libtiff 117531 / 15696 623 402 10133
libxml2 391529 / 67961 803 496 4030
openssl 795285 / 101436 2095 1763 18201
poppler 360622 / 42552 893 1041 12640
sqlite3 380979 / 59291 8052 1953 34602

php 2500805 / 354455 21542 7538 196473
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Figure 7: The average number of executions needed for
reproducing the targets in Magma compared with AFLGo.

How does the precision of static analysis influence
the reproduction speed? Finally, we evaluate the influence
of the static analysis engine, whose accuracy influences
the quality of the inferred correlation. We vary two crucial
settings for static analysis: the granularity of the pointer
analysis and the number of loop unrolling. By default, Titan
uses a flow-insensitive pointer analysis and unrolls the loop
twice. We evaluate the results using a flow-sensitive pointer
and unroll the loop 5, 15, and 30 times.

The results are shown in Figure 8. When combined
with a more precise pointer analysis, Titan-precise uses
82% time in reproducing the targets at the expense of 3.4x
pre-analysis time. Similarly, along with unrolling the loop,
the reproduction results could slightly improve (1.03x on
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Figure 8: Influence of static analysis in reproduction and pre-
analysis time. Figures 8a and 8c demonstrate the results for
pointer analysis, while Figures 8b and 8d for loop unrolling.
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Figure 9: Comparison of the integration. The y-axis is the
ratio of the reproducing time compared with Titan + Beacon.

average), using the much more (47.2x) pre-analysis time.
Moreover, Titan cannot finish analyzing the project within a
24-hour time budget over half of the project when unrolling
the loop more than 15 times.

In conclusion, even though the question remains, our
results demonstrate that Titan provides a practical imple-
mentation design for striking an optimal balance between
precision and efficiency, allowing us to achieve sufficient
accuracy in detecting vulnerabilities while minimizing the
associated computational costs. We also plan to address this
ongoing challenge in future work.

5.4. Compatibility of Assisting Single-Target
Fuzzers Reach Multiple Targets

To show the compatibility of Titan, we integrate it
with Beacon, a state-of-the-art fuzzer that prunes infeasible
executions for directed fuzzing. The precondition inferred by
Titan can also help to prune infeasible executions. Therefore,
we use Titan to determine whether the results from Beacon
can be merged for multiple targets. Specifically, since Titan
also infers the preconditions for each target, we analyze the
results exported by Beacon and check whether they can
be merged for multiple targets. Then, we use the merged
results to generate a pruned binary for fuzzing to evaluate
the efficiency of reproducing multiple targets.

The results for Beacon and Titan + Beacon are shown
in Figure 9. Titan can modify Beacon to support multi-
ple targets and improve its performance by 1.5x and 6.0x
compared with using Titan or Beacon alone, respectively.
This improvement indicates that Titan effectively addresses
the synergy ignorance problem and can help other fuzzers
support multi-target directed fuzzing.

5.5. Runtime Overhead Comparison

Because Titan provides fine-grained feedback for di-
rected fuzzing to reach multiple targets efficiently, the ex-
tra instrumentation may harm the performance. Therefore,
we compare the runtime overhead introduced by Titan
and AFLGo to the original AFL. We use the seed in the
Magma benchmark and force the fuzzer to generate the same
number of inputs using the deterministic mode, ensuring that
all inputs are the same.

The results are presented in Table 8. Titan achieves 1.8%
less overhead than AFLGo on average. The maximum over-
head is 30.4% for openssl. Although we do not need to

Table 8: Runtime overhead comparison of Titan and
AFLGo-Multi running the same amount of input. N rep-
resents the number of executions conducted by the fuzzers.

Project N Titan AFLGo AFL

libpng 66.7K 124 (2.5%) 129 (6.6%) 121
libsndfile 43428 130 (2.3%) 137 (7.8%) 127
libtiff 1.6M 4595 (17.5%) 4008 (2.5%) 3909
libxml2 34.3K 80 (5.4%) 84 (10.5%) 76
openssl 52.5K 277 (30.4%) 345 (62.0%) 213
poppler 1.0M 27990 (28.8%) 25626 (18.0%) 21726
sqlite3 698.5K 1029 (6.7%) 999 (3.6%) 964
php 1.7M 1517 (4.6%) 1469(1.4%) 1449

Avg. 12.3% 14.1%

instrument every block for recording the distance according
to the discussion in Section 5.3, the runtime overhead can
vary based on the paths executed by the provided inputs,
which may result in Titan having a higher overhead than
AFLGo in few projects, such as libtiff and poppler.
Nevertheless, our evaluation demonstrates that the runtime
overhead of Titan is still manageable, considering the op-
timized reproduction time. Therefore, although Titan may
have a higher overhead in some cases, it remains a viable
and effective approach for detecting vulnerabilities in real-
world software systems.

5.6. Case Study

To understand the benefit brought by Titan, we study
the incomplete fix of CVE-2020-16599 detected in Binutils,
which both state-of-the-art academic and industrial fuzzers
have frequently evaluated. We simultaneously set multiple
targets for various CVEs in Binutils for Titan and AFLGo
to detect incomplete fixes. We also reproduce the targets
detected by Titan using the single-target version of AFLGo.
Unfortunately, despite the vulnerability being patched for
two years, this incomplete fix has not been detected by
previous fuzzers.

We simplify the program in Figure 10. CVE-2020-16599
involves memory access violations using an ELF binary with
a malformed header. We set multiple targets of different
vulnerabilities for Titan, e.g., targets at 12 and 15. CVE-
2020-16599 requires satisfying the header check at Line 6
to make flag “ 1 and reach Line 15. When setting multiple
targets for fuzzers, AFLGo-Multi explores the branch at
Line 12 more often since other targets could be easy to
reach, e.g., the target at Line 12, introducing a bias to the
average distance, which makes reaching the target at Line
15 more difficult.

Even if setting Line 15 as the only target, AFLGo-Single
does not consider covering the branch at Line 7 since it does
not influence the control-flow distance. Fortunately, Titan
can identify one of the root causes for CVE-2020-16599 is
to make flag set to 1, and thus prioritize the seed satisfying
this condition for the target at Line 15 in both single-target
and multi-target scenarios. Therefore, we successfully detect
this incomplete fix.



1int main(){
2 int header,content = parse_input();
3 int flag = 0;
4
5 // incomplete fix of CVE-2020-16599

6 if(header_check(header)) {
7 flag = 1;
8 } else {...}
9

10 if(parse_header()) {
11 if(parse_content()) {
12 ...//other reachable targets
13 }
14 else if(flag&&...) {
15 crash(); // CVE-2020-16599 occurs;
16 }
17 }
18}

Figure 10: Incomplete fix of CVE-2020-16599.

5.7. Discussion

Synergy with rich semantics. In Titan, we utilize
the correlations among targets using the fundamental path
conditions, enabling us to fuzz multiple targets more effi-
ciently in one instance than other directed fuzzers. However,
some bugs could involve complex semantics apart from
path conditions, such as excessive memory usage or critical
content leakage in various application scenarios, e.g., net-
work service and operating system. The synergy analysis in
Titanhas not supported these rich semantics, which could
be extended in future work by integrating additional static
analysis for various program behaviors, e.g., lock analysis
for concurrency issues.

Cooperating static analysis with fuzzing. Static anal-
ysis has shown a great potential for optimizing fuzzing
in many aspects, such as seed scheduling [10], [11], mu-
tation [16], [17], [38], and tailored instrumentation [39].
In Titan, we leverage static analysis to infer the synergy
relations among multiple targets to improve seed scheduling
and mutation. However, the precision-efficiency paradox of
static analysis remains an open question that influences the
effectiveness of directed fuzzing, as shown in Figure 8.
Statically determining the granularity of the static analysis
for every project evaluated by Titan could become a threat
to validity. For example, an ideal field-, path-, and context-
sensitive static analysis could help Titan identify the cor-
relations more precisely involving complex semantics with
data structure, nested loop, and indirect call, even though
such a precise analysis suffers from scalability issues, which
can hinder the effectiveness of assisting other applications
such as fuzzing. Our work does not focus on balancing this
paradox but adapts existing designs for the directed fuzzing
of multiple targets. In future work, we plan to design an
automatic selection strategy to find the most proper static
analysis for different targets.

6. Related Work

Apart from the existing literature in directed grey-box
fuzzing (Section 2.1), we survey other related work that can

be adapted for directed fuzzing for further improvements.

Sophistcated seed scheduling. The idea of scheduling
is first proposed by AFLFast [21], which describes the
probability of executing different paths in the programs
using the Markov chain. However, since the probability
cannot be obtained precisely in practice, AFLFast uses
execution frequency to estimate the probability of finding
new paths as the potential for each seed. Based on this
intuition, one trend of existing works is to estimate the
probability more precisely and reasonably. For example,
Entropic [35] uses the information theory and the entropy to
approximate the probability. EcoFuzz [40] design a multi-
armed bandit model to measure the potential gains of the
seed. Meanwhile, some efforts propose to use the uncovered
part of the program as the potential gains for the seeds. K-
Scheduler [41] proposes to use graph centrality to approxi-
mate the potential gains of the seed. BeliefFuzz [42] models
the seed scheduling as a Monte Carlo planning process to
consider the cost and the benefit simultaneously. Moreover,
Parmesan [16] proposes to set the program points labelled
by sanitizers as the targets and redesign the fitness for
fuzzing to achieve better outcomes. Still, these techniques
are designed to achieve higher coverage, which cannot be
directly adapted for directed fuzzing.

Optimized mutation strategies. One major trend of
optimizing mutation is to mutate the related input offsets to
satisfy the uncovered branch conditions. Other than random
mutation, Fairfuzz [22] identifies the input offsets where
the values are not necessary to change, Thus, minimizing
the input search space improves the efficiency of mutation.
Angora [32] adapts byte-level taint tracking to discover the
related input bytes of the target condition and then applies
a gradient-descent-based search strategy. Redqueen [25]
proposes to use the intermediate values as the feedback
to modify the values in the inputs. The second direction
is to integrate fuzzers with concolic/symbolic execution,
a.k.a. hybrid fuzzing, for tackling complex and tight path
constraints. For example, QSYM [43] solves part of the path
constraint for a basis seed and leverages mutation for vali-
dated inputs satisfying the actual condition. Intriguer [44]
further replaces symbolic emulation with dynamic taint
analysis, which decreases the overhead of modelling a large
amount of mov-like instructions. Pangolin [38] proposes to
preserve the constraint as an abstraction and reuse it to guide
further input generation.

Nevertheless, these methods all require a specific branch
to find the related bytes. However, directed fuzzing cannot
choose the branches as coverage-guided fuzzing does since
it is challenging to determine which branch to be covered
to reach the target faster. Some branches may not even
satisfy the path conditions of the targets. Thus, directed
fuzzing cannot trivially adapt existing mutation approaches
to generate the inputs toward the targets effectively. For-
tunately, Titan can specify branches using the variables
in the inferred correlations and make the mutation target-
directed. Therefore, it might solve an orthogonal problem
of optimizing mutation for directed fuzzing.



7. Conclusion

We have presented Titan, which provides fine-grained
feedback by distinguishing the path correlations for directed
fuzzers to reach multiple targets efficiently. Titan improves
the effectiveness of seed scheduling while optimizing the
mutation with less redundancy. The empirical results prove
that the improvement brought by Titan is significant, which
Titan outperforms existing directed fuzzers 21.4x in reach-
ing multiple targets using 95.0% fewer executions. More-
over, Titan also detects nine previously unseen incomplete
fixes with two CVE IDs assigned.
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Appendix A.
Meta-Review

A.1. Summary

This paper presents Titan, a tool to provide multi-target
directed greybox fuzzing. The core idea of Titan is to
explore correlations among different targets as guidance for
directed fuzzing; based on the correlations, Titan differ-
entiates the potential of seeds for different targets during
seed scheduling and identifies the bytes that can be changed
simultaneously during mutations. The evaluation shows that
Titan outperforms the existing directed greybox fuzzing
tools when it is applied to handle multiple targets.

A.2. Scientific Contributions

‚ Creates a New Tool to Enable Future Science
‚ Provides a Valuable Step Forward in an Established

Field

A.3. Reasons for Acceptance

1) This paper pinpoints an unnoticed problem that
multiple-target directed fuzzing suffers great perfor-
mance loss when the number of targets explodes.

2) This paper designs a new directed greybox fuzzing tool
Titan, which performs much better than the existing
tools in multiple-target scenarios in the evaluation.

3) The authors claim to release and keep maintaining their
prototype, which will facilitate research in this field.

A.4. Noteworthy Concerns

1) Titan was evaluated on the fuzzing benchmark Magma,
yet the interdependence between the targets can be-
come more intricate in real-world scenarios. It re-
mains unclear whether Titan can handle such intricate
cases without encountering unexpected issues, includ-
ing some potential compilation errors, which have been
observed in similar tools.
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