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ABSTRACT
Ensuring the equality of SMT solvers is critical due to its broad

spectrum of applications in academia and industry, such as symbolic

execution and program verication. Existing approaches to testing

SMT solvers are either too costly or nd diculties generalizing

to dierent solvers and theories, due to the test oracle problem. To

complement existing approaches and overcome their weaknesses,

this paper introduces skeletal approximation enumeration (SAE), a

novel lightweight and general testing technique for all rst-order

theories. To demonstrate its practical utility, we have applied the

SAE technique to test Z3 and CVC4, two comprehensively tested,

state-of-the-art SMT solvers. By the time of writing, our approach

had found 71 conrmed bugs in Z3 and CVC4, 55 of which had

already been xed.

CCS CONCEPTS
• Software and its engineering→ Software verication and vali-
dation.
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1 INTRODUCTION
Satisability Modulo Theory (SMT) solvers evaluate the satisa-

bility of formulas over rst-order theories, such as integers, reals,
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bit-vectors, and strings [11, 20, 27, 28, 30, 32, 42]. To date, SMT

solvers have been widely used in a variety of techniques, such as

testing [23, 33], verication [13, 29], program repair [41], program

synthesis [14, 50], and others. Despite the tremendous research

progress in SMT solving, state-of-the-art SMT solvers are still error-

prone [22, 39, 59, 60]. Bugs in SMT solvers can aect the correctness

and robustness of the software that depends on the solvers. For in-

stance, in symbolic execution, spurious satisfying assignments (i.e.,

models) for path conditions are mapped to infeasible test inputs. In

program verication, wrong satisability results can invalidate the

results of the veriers, which can have detrimental consequences

for safety-critical domains [45, 58].

The predominant approach to validating SMT solvers consists of

various testing techniques. An important and challenging problem

is the test oracle, i.e., the input formula’s satisability, which is

crucial for detecting correctness bugs in SMT solvers. For example,

a buggy solver may return “unsat” (i.e., unsatisable) for satisable

formulas, or return “sat” (i.e., satisable) for unsatisable formulas.

To address the oracle problem, there are two categories of tech-

niques, dierential testing and oracle-guided approach. Dierential

testing techniques randomly generate syntactically valid formulas,

solve the formulas using multiple SMT solvers, and compare the

solving results to identify correctness bugs [15, 19, 48, 59]. However,

dierential testing cannot be applied when a formula contains some

solver-specic extensions. For example, a formula with the specic

Z3 [28] extension “assert-soft” cannot be solved by CVC4 [11].

In comparison, the oracle-guided approach systematically syn-

thesizes formulas whose satisability results are known by con-

struction [22, 39, 60]. Such information acts as the oracle, i.e., an

SMT solver violating the results is buggy. Compared to dieren-

tial testing, they do not need to run a formula against dierent

solvers and, thus, are usually more lightweight and easier to deploy.

However, we observe that existing oracle-guided techniques still

face the generality problem, owing to the innate semantic com-

plexity of SMT problems. As illustrated in the last three rows of

Table 1, on the one hand, some strategies only apply to specic

theories [22, 60]. On the other hand, while the technique in [39] is

general for dierent theories, it only partially addresses the oracle

problem, i.e., its mutation strategy can only generate satisable

mutants. Consequently, the technique can miss certain bugs, i.e., a

formula is unsatisable, but the solver returns “sat”.

https://doi.org/10.1145/3468264.3468540
https://doi.org/10.1145/3468264.3468540
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Table 1: Comparison among state-of-the-art techniques. The
“Oracle” column represents whether the tool can generate
formulas whose satisability is known by construction. The
“Theory” column represents the supported theories.

Technique Oracle Theory

Blotsky et al. [15] dierential string

Scott et al. [48] dierential string, oat

Winterer et al. [59] dierential all theories

Bugariu et al.[22] sat,unsat string

Winterer et al. [60] sat,unsat int, real, string

Mansur et al. [39] sat all theories

This paper presents a new oracle-guided approach to testing

SMT solvers, which signicantly complements existing work, in

that our strategy is general enough for all theories and can generate

both satisable and unsatisable mutants. Our approach builds on

the metamorphic testing formalization [25], which takes as input a

seed formulaφ, and tests the solver by identifying the inconsistency
between the satisability result of φ and its equi-satisable mutants.

To generate the mutants, we propose to use a less-explored meta-

morphic relation that rests on a fundamental property of rst-order

formulas: let φo and φu be an over-approximation and an under-

approximation of φ respectively, we have (1) φ is satisable ⇒

φo is satisable, and (2) φ is unsatisable ⇒ φu is unsatisable.

Thus, in our approach, with the satisability of a seed φ deter-

mined by the solver, we further compute an equi-satisable mutant

φo or φu via logical approximations. If the solver does not provide a

consistent result for φ and its approximations, then a potential aw

manifests. By nature of the metamorphic relation, our approach

can generalize to dierent theories and generate both satisable

and unsatisable mutants.

To instantiate the metamorphic relation, the major challenge

is how to correctly and eciently approximate the seed formulas.

Dierent from existing logical approximation techniques that are

either theory-specic [16, 18, 21] or costly due to heavyweight

logical reasoning [35, 37, 40], this paper introduces a novel gen-

eral and lightweight approximation approach, namely skeletal ap-
proximation enumeration (SAE). SAE views an SMT formula, e.g.,

φ ≡ (x < 10 ∧ y > 5) ∨ (x > 2 ∨ z > 3), as two parts: a Boolean

structure, e.g., (21 ∧ 22) ∨ (23 ∨ 24), and a set of literals, e.g.,

{x < 10,y > 5,x > 2, z > 3}. The essence of SAE is to obtain

equi-satisable formulas by mutating the literals 2i locally, which

is usually lightweight. We present a practical realization of SAE,

which is embodied by a series of literal-level mutation rules, and a

systematic way to combine the local mutants. We also prove the

correctness of our algorithms.

We have implemented the proposed idea as a tool named Sparrow

and applied the tool to testing Z3 and CVC4, two state-of-the-art

and comprehensively tested SMT solvers. By the time of writing,

Sparrow had found 29 and 42 conrmed bugs in Z3 and CVC4,

respectively. Besides, 55 of the bugs had been xed by the develop-

ers, among which 23 are correctness bugs. In summary, this paper

makes the following contributions:

• We present a new metamorphic testing approach for SMT

solvers, which leverages logical approximations as the meta-

morphic relation.

• We introduce skeleton approximation enumeration (SAE), a

methodology for approximating SMT formulas, and propose

a practical realization of SAE.

• We implement our approach as the Sparrow tool, which

detects 71 conrmed bugs in Z3 and CVC4, two state-of-the-

art SMT solvers.We also present several in-depth evaluations

to understand Sparrow’s eectiveness.

2 PRELIMINARIES
In this section, we present the notations and terminologies through-

out the paper.

Basic Notations. Satisability modulo theories (SMT) extend

the Boolean satisability problem (SAT) with the capability of rea-

soning with rst-order theories, such as integers, reals, arrays, and

strings. In a rst-order theory, a term can be a variable, a constant,

or an n-ary function applied to n terms. An atom is true, false, or an

n-ary predicate applied to n terms. A literal is an atom or its nega-

tion. A formula is built from atoms using the Boolean connectives,
e.g., ¬,∧,∨,→. Given a formula φ, we denote its free variables and
literals by vars (φ) and lits (φ), respectively. For ease of presenta-
tion, in the rest of the paper, we assume that all literals in lits (φ)
are distinct.

Denition 2.1. (Conjunctive Normal Form) A formula is in the

conjunctive normal form (CNF) if it is a conjunction of one or more

clauses (C1 ∧C2 ∧ · · · ), where each clauseCi is a disjunction of one

or more literals (l1 ∨ l2 ∨ · · · ).

Example 2.1. In the theory of integers, the function symbols in-

clude {+,−, ∗, /} and the predicate symbols consist of {<, ≤, >, ≥

,=,,}. Consider an integer formula φ ≡ x ≥ 1∨¬(x ∗x > 10). The
expressions 1, 10,x , and x ∗x are integer terms, and the expressions

x ≥ 1 and ¬(x ∗ x > 10) are literals. The formula is in CNF, which

has only one clause. By contrast, the formulas x > 2→ x > 1 and

¬(x > 2 ∧ y > 10) are not in CNF.

Logical Approximations. A formula φ is satisable if there

exists an assignment tovars (φ), under which the formula evaluates

to true. If it is impossible to nd such an assignment, the formula

is unsatisable. A formula φ is a tautology i its negation ¬φ is

unsatisable. We write ϕ ` ψ to denote that the formula ϕ → ψ
is a tautology. In other words, ϕ ` ψ i the formula ¬(ϕ → ψ ) ≡
¬(¬ϕ ∨ψ ) ≡ ϕ ∧ ¬ψ is unsatisable.

Denition 2.2. (Over- and Under-Approximations) Let φ be a

rst-order formula. We say a formula φo over-approximates φ i

φ ` φo (i.e., φ ∧ ¬φo is unsatisable). We say a formula φu under-
approximates φ i φu ` φ (i.e., φu ∧ ¬φ is unsatisable).

Intuitively, the over- and under-approximations of a formula

are the necessary and sucient conditions for the formula to be

satisable, respectively.

Example 2.2. Consider an integer formula φ ≡ x > 5. Clearly, the

formula φ ′ ≡ x > 1 over-approximates φ. If x > 1 does not hold,

then x > 5 must also be unsatisable. Conversely, we can say that

φ under-approximates φ ′.
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Metamorphic Testing. A test oracle is a mechanism for deter-

mining whether a test has passed or failed. Under certain circum-

stances, however, the oracle is unavailable or too expensive to

achieve. This is known as the test oracle problem [57]. Metamor-

phic testing [25] can be exploited to alleviate the problem. Based on

the existing successful test cases, metamorphic testing generates

follow-up test cases by referring to domain-specic metamorphic
relations, which are the necessary properties of the target program

in terms of multiple inputs and their expected outputs. The viola-

tion of a metamorphic relation will be suspicious and indicate a

potential bug.

Example 2.3. Let F be a program implementing the transcenden-

tal function “sin”. The equation sin(π − x ) = sin(x ) is a typical

metamorphic relation with respect to F . Hence, given a successful

test case, say a = 1.2, metamorphic testing generates its follow-up

test case a′ = π−1.2, and then runs the program over a′. Finally, the
two outputs, i.e., F (a) and F (a′), are checked to see if they satisfy

the expected relation F (a) = F (a′). If the relation does not hold, a

bug in F manifests.

An important property of metamorphic testing is that it does

not need a reference engine for dierential testing, because the

metamorphic relation provides an explicit oracle, i.e., the seed and

its variants must output the same result. When testing SMT solvers,

this property is particularly benecial when the test inputs contain

some solver-specic extensions.

3 PROBLEM FORMULATION
In this section, we rst present the metamorphic relation used in

our work. We then formulate skeletal approximation enumeration,

which aims to realize the metamorphic relation eectively.

3.1 Approximation-based Metamorphic
Relation

In SMT solver testing, the satisability of randomly generated

formulas is typically unknown, without which we cannot decide

whether the solver correctly solves the formulas. To address the

problem, our work follows the metamorphic testing formulation.

Specically, we propose to use a less-explored metamorphic rela-

tion for SMT problems, which builds on the following fundamental

property of rst-order logic.

Theorem 3.1. Let φo and φu be an over-approximation and an
under-approximation of a rst-order formula φ, respectively (i.e.,
φ ` φo and φu ` φ). We have (1) if φ is satisable, then φo is also
satisable, and (2) if φ is unsatisable, then φu is also unsatisable.

Example 3.1. Consider the formula φ ≡ x > 5 in Example 2.2. The

formula φ ′ ≡ x > 1 over-approximates φ. Clearly, if φ is satisable,

then φ ′ is also satisable. Conversely, φ under-approximates φ ′. If
φ ′ is unsatisable, then φ must be unsatisable.

Based on Theorem. 3.1, a metamorphic relation can be dened

within a pair of formulas (φ,φ ′), where φ is a seed formula, and φ ′

is a mutant. Given a formulaψ and an SMT solver S , we denote S (ψ )
the result of using S to solveψ . We then dene the metamorphic

relation as follows:

S (φ) = S (φ ′), where (1){
φ ` φ ′ if φ is satisable

φ ′ ` φ if φ is unsatisable

To test the solver S , we could obtain and compare the solving results

S (φ) and S (φ ′). If S (φ) , S (φ ′), then a bug in the solver is revealed.

3.2 Skeletal Approximation Enumeration
To eectively instantiate themetamorphic relation in Equation 1, we

formulate the skeletal approximation enumeration problem, a new

methodology for approximating rst-order formulas. As mentioned

in § 1, an SMT formula φ consists of two parts: a Boolean structure

and a set of literals in some rst-order theory.

Denition 3.1. (Skeletal Approximation Enumeration) Given a

formula φ with a set of literals lits (φ) = {21, . . . ,2n }, skeletal

approximation enumeration (SAE) computes the approximations

of φ by enumerating the approximations of the literals.

For a given literal 2i ∈ lits (φ), SAE can randomly pick a new

literal l ′i to replace the literal, such that 2i ` l
′
i or l

′
i ` 2i . We

denote the resulting mutant as φ ′ ≡ φ[l ′i /2i ].

Example 3.2. Consider a satisable integer formula φ ≡ (x <
10∧y > 5)∨ (x > 2∨z > 3). According to the metamorphic relation

in Equation 1, we should obtain the mutants by over-approximating

φ. Suppose x < 10 is chosen for mutation. After replacing x < 10

by x < 11 (an over-approximation of x < 10), we obtain a mutant

φ ′ ≡ ( x < 11 ∧y > 5)∨ (x > 2∨z > 3), which over-approximates

the seed φ.

To realize skeletal approximation enumeration, there are many

potential methods for selecting the literals in a seed formula and

picking the new literals for replacement. These methods should

address the following challenges.

Correctness. First, we need to preserve the metamorphic rela-

tion in Equation 1, i.e., enforce that the mutant does over- or

under-approximate the seed formula, subject to the satisability of

the seed. In essence, SAE generates the mutants by enumerating

literal-level approximations. For the skeleton in Example 3.2, over-

approximating the literal x < 10 can yield an over-approximation

of the seed formula. However, simply approximating a literal in a

given formula may lead to a nondeterministic mutant that can be

either an over-approximation or an under-approximation. Conse-

quently, the mutation strategy can violate Equation 1, making the

satisability of the mutant unpredictable.

Example 3.3. Suppose we need to over-approximate an integer

formula φ ≡ x > 5 → y > 10. Clearly, the formula x > 1 over-

approximates x > 5. However, after replacing x > 5 by x > 1, the

new formula φ ′ ≡ x > 1 → y > 10 does not over-approximate φ.
This is because

φ ≡ ¬(x > 5) ∨ y > 10 ≡ x ≤ 5 ∨ y > 10

φ ′ ≡ ¬(x > 1) ∨ y > 10 ≡ x ≤ 1 ∨ y > 10

Since x ≤ 1 under-approximates x ≤ 5, we conclude that φ ′ is an
under-approximation of φ.
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Eciency and Generality. Second, it is crucial but challenging
to approximate the seed formulas in various theories eciently,

considering SMT problems’ innate semantic richness. The formulas

can encode relations about diverse variables, such as integers, reals,

bit-vectors, and oating points. The relations can be combined with

dierent Boolean connectives (∧,∨,¬,→, etc.) in a complicated

manner. While there are many algorithms for approximating rst-

order formulas in the SMT solving literature, most of them are

either theory-specic [16, 18, 21], or rely on heavy-weight logical

reasoning [35, 37, 40], thereby undermining their applicability in

SMT solver testing.

Problem Statement. Based on the discussion above, we aim to

address two challenges in using skeletal approximation enumera-

tion to instantiate the metamorphic relation in Equation 1:

(1) How to guarantee that the generated mutant indeed over-

or under-approximates the seed formula? (2) How to design

the mutation strategies for eciently mutating literals in

dierent theories?

4 APPROACH
In this section, we rst present and prove the basic principle under-

lying our approach, which addresses the rst challenge. We then

present our literal-level mutation strategies, which address the sec-

ond challenge. Finally, we describe how to combine the literal-level

mutants for testing SMT solvers.

4.1 Approximation from CNF
Skeletal approximation enumeration approximates a formula by

enumerating the approximations of its literals. To ensure that the

literal-level approximations preserve the metamorphic relation in

Equation 1, we need to ll the gap between (1) approximating a seed

formula that can be an arbitrary Boolean combination of literals

and (2) approximating the individual literals in the seed.

To ll the gap, our key idea is to rst transform a seed formula

into a suitable “internal form”, and then design the mutation op-

erators. Our idea draws inspiration from existing SMT solving

algorithms that often build on some specic representations, such

as the add-inverter graph (AIG) [62] the conjunctive normal form

(CNF). Specically, we lay the foundation of our approach with the

following theorem.

Theorem 4.1. Let φ be a rst-order formula in CNF and l ∈ lits(φ)
a literal in φ. We have (1) if a formula l ′ over-approximates l , then
φ[l ′/l] must over-approximate φ (i.e., l ` l ′ ⇒ φ ` φ[l ′/l]), and
(2) if a formula l ′ under-approximates l , then φ[l ′/l] must under-
approximate φ (i.e., l ′ ` l ⇒ φ[l ′/l] ` φ).

Proof. We rst prove (1). By the denition of CNF (Deni-

tion 2.1), we assume that φ ≡ C1 ∧ C2 ∧ · · · ∧ Cn , where each

Ci (1 ≤ i ≤ n) is a disjunction of literals. Without loss of gen-

erality, we suppose l ′k over-approximates lk in the n-th clause

Cn ≡ (l1 ∨ l2 ∨ · · · ∨ lk ), i.e., lk ∧ ¬l
′
k is unsatisable. Next, we

prove (1) by induction on the structure of CNF formulas.

(a) First, we prove that C ′n ≡ Cn[l
′
k/lk ] over-approximates Cn ,

i.e., the following formula is unsatisable.

Cn ∧ ¬C
′
n ≡ (l1 ∨ · · · ∨ lk−1 ∨ lk ) ∧ ¬(l1 ∨ · · · ∨ lk−1 ∨ l

′
k )

For simplicity, we abbreviate (l1 ∨ · · · ∨ lk−1) to B.

Cn ∧ ¬C
′
n ≡ (B ∨ lk ) ∧ ¬(B ∨ l

′
k )

≡ (B ∨ lk ) ∧ (¬B ∧ ¬l ′k )

≡ (B ∧ ¬B ∧ ¬l ′k ) ∨ (lk ∧ ¬B ∧ ¬l
′
k )

≡ f alse ∨ (lk ∧ ¬B ∧ ¬l
′
k )

Since lk ∧ ¬l
′
k is unsatisable, we conclude that Cn ∧ ¬C

′
n

is unsatisable, i.e., C ′n over-approximates Cn .
(b) Then, we prove that φ ′ ≡ φ[C ′n/Cn] over-approximates φ,

i.e., the following formula is unsatisable.

φ ∧ ¬φ ′ ≡ (C1 ∧ · · · ∧Cn−1 ∧Cn ) ∧ ¬(C1 ∧ · · · ∧Cn−1 ∧C
′
n )

For simplicity, we abbreviate (C1 ∧ · · · ∧Cn−1) toψ .

φ ∧ ¬φ ′ ≡ (ψ ∧Cn ) ∧ ¬(ψ ∧C
′
n )

≡ (ψ ∧Cn ) ∧ (¬ψ ∨ ¬C ′n )

≡ (ψ ∧Cn ∧ ¬ψ ) ∨ (ψ ∧Cn ∧ ¬C
′
n )

≡ f alse ∨ (ψ ∧Cn ∧ ¬C
′
n )

SinceCn∧¬C
′
n is unsatisable (as proved in (a)), we conclude

that φ ∧ ¬φ ′ is unsatisable, i.e., φ ′ over-approximates φ.

Taking (a) and (b) together, we complete the proof for (1). The proof

for (2) is similar. We omit the details due to lack of space. �

Theorem 4.1 is crucial for fullling the correctness criterion of

skeletal approximation enumeration. Specically, if a seed formula

φ has been transformed into CNF, then locally over- or under-

approximating a literal in φ can yield a global over- or under-

approximation of the whole formula, respectively. As a result, it

allows us to turn the problem of approximating a rst-order formula

into (1) approximating the literals in the formula and (2) composing

the literal-level mutants.

Example 4.1. Consider again the formula φ ≡ x > 5 → y > 10

in Example 3.3. We can rst transform φ to CNF, and obtain a

normalized formula φcnf ≡ ¬(x > 5) ∨ y > 10 ≡ x ≤ 5 ∨ y > 10.

We then perform the mutation on the CNF formula. For instance,

consider a formula x < 10 that over-approximates x ≤ 5. After

replacing x ≤ 5 by x < 10 in φcnf , we obtain the mutant φ ′cnf ≡

x < 10 ∨ y > 10 that over-approximates φcnf .

In what follows, we detail how to realize skeletal approximation

enumeration for testing SMT solvers. Our approach has two build-

ing blocks: designing mutation strategies for literals in dierent

rst-order theories and combining literal-level mutants to obtain

the whole formula’s mutants.

4.2 Literal-level Mutation Strategies
We present two mutation strategies, predicate symbol transforma-

tion (§ 4.2.1) and live predicate injection (§ 4.2.2), which approx-

imates a literal by mutating the predicate symbols and injecting

formula snippets, respectively. Both strategies can over- and under-

approximate a literal. Without loss of generality, we assume that

the seed formula has been transformed into CNF.
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4.2.1 Predicate Symbol Transformation (PST). The rst strategy
is to mutate the predicate symbol in a literal. Our basic observa-

tion is that the predicate symbols in a rst-order theory can have

some partial order relations (ordered by logical implication). Thus,

transforming the symbols in a literal can yield the over- or under-

approximations of the literal. For example, the following is a small

sample of transformations for various theories.

• Let x and y be two integer variables. The predicate x ≤ y
over-approximates x < y.
• Let x and y be two real variables. The predicate x > y under-

approximates x ≥ y.
• Let x and y be two string variables. The predicate “x is a

prex of y” is an under-approximation of “y contains x”.

In what follows, we detail the mutation strategies for predicate

symbols in literals of dierent theories.

Mutating an Atom. First, suppose that the literals to be mu-

tated do not contain logical negations, i.e., each literal is an atom.

Table 2 summarizes the rules for approximating an atom in integers,

reals, bit-vectors, oating points, and strings. The rules have several

characteristics. First, for a given atom, there can be more than one

mutation rule. For example, to over-approximate x = y where x
and y are integers, we can mutate “=” to “≤” or “≥”. Intuitively, if

x = y holds, then x ≤ y and x ≥ y must also hold. Second, the

mutations may introduce fresh constants in the background theory.

For example, when over-approximating x ≤ y to x < y + a, we
can use a randomly-generated integer constant a where a > 0.

Third, there are some unsupported atoms for bit-vectors and oats,

due to the overow semantics [17]. For example, we cannot over-

approximate x bvule y to x bvult (y bvadd a) (a > 0) (like the

one for integers), because bit-vectors model bounded integers (e.g,

32-bits integers), where the “add” function may overow. We will

present the strategy for handling such atoms in § 4.2.2.

Mutating Negated Literals. So far, the mutation rules only

apply to atoms, i.e., negation-free literals. As our goal is to mutate

a literal that can contain negations (e.g., ¬x > y), we proceed to

discuss the approximations of such cases. The overall idea behind

our approach is to eliminate the negations, after which we can reuse

the rules in Table 2. The challenge, however, is how to eliminate

negations soundly. Our solution is embodied by two parts.

First, we can transform the literal to an equivalent and negation-

free atom, and then reuse the mutation rules for that atom. For

example, to over-approximate the integer literal ¬x > y, we rst
transform it to an equivalent atom x ≤ y and then apply an over-

approximation rule for x ≤ y.
Second, there are some cases where it is hard to eliminate nega-

tions by nding equivalent atoms. For example, consider a literal

¬(x str.prefixof y) in the string theory, which means “x is not a

prex of y”. It is nontrivial to represent the literal as an equivalent

atom. To handle such cases, our approach leverages the conver-

sions between under- and over-approximations, established by the

following proposition.

Proposition 4.2. Given two rst-order formulas φo and φu that
over-approximates and under-approximates a formula φ, respectively,
we have (1) ¬φo under-approximates ¬φ (i.e., φ ` φo ⇒ ¬φo ` ¬φ),
and (2) ¬φu over-approximates ¬φ (i.e., φu ` φ ⇒ ¬φ ` ¬φu ).

Proof. We sketch the proof of (1). Since φ ` φo , we have that
¬(φ → φo ) is unsatisable. To prove (1), we need to show that

¬(¬φo → ¬φ) is unsatisble. Observe that ¬(¬φo → ¬φ) ≡
¬(¬¬φo ∨ ¬φ) ≡ ¬(¬φ ∨ φo ) ≡ ¬(φ → φo ). Since ¬(φ → φo )
is unsatisable, we conclude that ¬φo ` ¬φ. �

Proposition 4.2 has two implications. First, it allows us to use

over-approximating techniques to generate under-approximations,

and vice versa. Second, it allows for eliminating the negation in

a literal. As such, we can soundly reuse the rules in Table 2. For

example, suppose we need to over-approximate a literal ¬p, which
can be processed in three steps:

(1) Negate ¬p and obtain an atom, i.e., ¬(¬p) ≡ p;
(2) Under-approximate p (using the rules in Table 2), and let the

result be p′ (i.e., p′ ` p);
(3) Negate p′ and obtain the nal result ¬p′ (By Proposition 4.2,

we have that ¬p′ over-approximates ¬p, i.e., ¬p ` ¬p′).

In the above process, we only apply under-approximation rules

and logical negations, while the nal result over-approximates the

literal ¬p.

Example 4.2. Let ¬(x str.prefixof y) be the string literal to

be over-approximated. First, we take its negation and obtain an

atom x str.prefixof y. Second, we under-approximate the atom

x str.prefixofy, and let the result bey = x str.++ “alice”, where
str.++ represents “string concatenation”. Finally, we negate the re-
sult and obtain ¬(y = x str.++ “alice”), which over-approximates

¬(x str.prefixof y).

Remarks. First, we should emphasize that literal-level approxi-

mations are not restricted to the rules in Table 2. A richer set of rules

can be designed. Second, the strategy is similar to the type-aware

operator mutation presented by Winterer et al. [59]. However, their

mutations do not guarantee the preservation of satisability. This

is because they operate over formulas with arbitrary Boolean struc-

tures, and perform the mutations randomly. For example, consider

a trivially unsatisable integer formula 2 > 3. The approach in [59]

may mutate the formula to 2 ≥ 3 or 2 < 3, the second of which has

a dierent satisability result.

4.2.2 Live Predicate Injection (LPI). The PST strategy transforms

the predicate symbol of a literal but has two limitations. First, it can-

not mutate certain literals such as “over-approximating x bvule y”.
Second, the search space is conned by the seed, e.g., PST cannot

change the function symbols and Boolean connectives in the seed.

To stress-test SMT solvers, we would like to generate syntactically

more complex mutants, which can exhibit diverse control- and

data-dependence between variables.

To this end, our second mutation strategy enriches a literal by

synthesizing a new formula snippetψ , and “injecting” it back to the
seed formula (using some proper Boolean connectives). The basic

idea is to utilize the formula snippet to relax or restrict the solution

space of a literal, thereby yielding the logical approximations of

the literal.

Example 4.3. Consider an integer formula φ ≡ x + y > 5 and its

two mutants below:

• φ1 ≡ x + y > 5 ∨x < 3 (φ ` φ1)

• φ2 ≡ x + y > 5 ∧x < 3 (φ2 ` φ)



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Peisen Yao, Heqing Huang, Wensheng Tang, Qingkai Shi, Rongxin Wu, and Charles Zhang

Table 2: Mutation rules for approximating an atom in dierent theories. Each atom may have one or more possible mutants
(separated by “,”). “a” denotes a randomly generated constant in the corresponding theory. N/A means unsupported.

Logic Atom Over-approximation Under-approximation

x < y (less than) x ≤ y,x , y x + a ≤ y (a > 0)

x ≤ y (less than or equal to) x < y + a (a > 0) x = y,x + a < y (a ≥ 0)

Int & Real x > y (greater than) x ≥ y,x , y x ≥ y + a (a > 0)

x ≥ y (greater than or equal to) x + a > y (a > 0) x = y,x > y + a (a ≥ 0)
x = y (equal) x ≤ y,x ≥ y a ≤ x ≤ a ∧ a ≤ y ≤ a (any a)
x , y (inequal) ¬(x = a ∧ y = a) (any a) x > y, x < y

x bvult y (unsigned less than) x bvule y,x , y N/A

x bvule y (unsigned less than or equal to) N/A x = y,x bvult y
x bvugt y (unsigned greater than) x bvuge y,x , y N/A

x bvuge y (unsigned greater than or equal to) N/A x = y,x bvugt y
x bvslt y (signed less than) x bvsle y,x , y N/A

Bit-Vec x bvsle y (signed less than or equal to) N/A x = y,x bvsgt y
x bvsgt y (signed greater than) x bvsge y,x , y N/A

x bvsge y (signed greater than or equal to) N/A x = y,x bvsgt y
x = y (signed equal) x bvsle y,x bvsge y a bvsle x bvsle a ∧ a bvsle y bvsle a (any a)
x , y (signed inequal) ¬(x = a ∧ y = a) (any a) x bvsgt y, x bvslt y
x = y (unsigned equal) x bvule y,x bvuge y a bvule x bvule a ∧ a bvule y bvule a (any a)
x , y (unsigned inequal) ¬(x = a ∧ y = a) (any a) x bvugt y, x bvult y

x fp.lt y (less than) x fp.leq y,x fp.neq y N/A

x fp.leq y (less than or equal to) N/A x fp.eq y,x fp.lt y
Float x fp.gt (greater than) x fp.geq y,x fp.neq y N/A

x fp.gt (greater than) x fp.geq y,x fp.neq y N/A

x fp.geq y (greater than or equal to) N/A x fp.eq y,x fp.gt y
x fp.eq y (equal) x fp.leq y,x fp.geq y a fp.leq x fp.leq a ∧ a fp.leq y fp.leq a (any a)
x fp.neq y (inequal) ¬(x fp.eq a ∧ y fp.eq a) (any a) x fp.gt y, x fp.lt y

x str.< y (lexicographic ordering) x str. ≤ y,x , y (x str.++ a) str. ≤ y (len(a) > 0)

x str. ≤ y (lexicographic ordering) x str. < (y str.++ a) (len(a) > 0) x = y,x str.< y
x str.prefixof y (x is a prex of y) x str. ≤ y, y str.contains x y = x str.++ a (len(a) ≥ 0)

String x str.suffixof y (x is a sux of y) x str. ≤ y, y str.contains x y = a str.++ x (len(a) ≥ 0)
x str.contains y (x contains y) y str. ≤ x y str.suffixof x ,y str.suffixof x

x = y (equal)

x str.suffixof y,x str.perfixof y, x str.suffixof a ∧ x str.prefixof a ∧
x str.contains y, x str. ≤ y y str.suffixof a ∧ y str.prefixof a (any a)

x , y (inequal) ¬(x = a ∧ y = a) (any a) x str.< y, y str.< x

In the mutants φ1 and φ2, the snippet x < 3 is injected via dis-

junction and conjunction, respectively. Observe that φ1 and φ2
over-approximates and under-approximates φ, respectively.

More concretely, we dene the mutation strategy as follows.

Denition 4.1. (Live Predicate Injection) Given a CNF formula

φ and a literal l ∈ lits (φ), live predicate injection rst randomly

generates a formula snippet ψ , and then injects the snippet as

follows: (1) if φ is satisable, it replaces l by l ∨ψ , and (2) if φ is

unsatisable, it replaces l by l ∧ψ .

The correctness of live predicate injection (LPI) is enforced by

the following proposition.

Proposition 4.3. Let l be a literal and ψ be an any rst-order
formula. We have (1) l ∨ψ over-approximates l , and (2) l ∧ψ under-
approximates l .

Proof. We sketch the proof of (1). By Denition 2.2, we need

to prove ¬(l → (l ∨ ψ )) is unsatisable. Since ¬(l → (l ∨ ψ )) ≡
¬(¬l ∨ (l ∨ψ )) ≡ ¬(l ∨ ¬l ∨ψ ) ≡ f alse , we have (1). �

Taking Theorem 4.1 and Proposition 4.3 together, we conclude

that the mutants produced by LPI are equi-satisable with the

seed formula φ, and, thus, preserve the metamorphic relation in

Equation 1. Moreover, by Proposition 4.3, the conclusion holds

regardless of the satisability of the formula snippet ψ , which
can contain any variables, function symbols, predicate symbols,

and Boolean connectives. This property allows us to generate

satisability-preserving mutants that exhibit dierent and diverse

control- and data-dependence.

Algorithm for LPI. To realize the LPI mutation strategy, we

need to generate formula snippets automatically. In what follows,

we use integer arithmetic to illustrate the essence of our approach,

and the handling of other theories is similar. The key observation

behind our solution is that, by nature, SMT formulas follow a lay-

ered construction. A formula is a Boolean combination of atoms,

which are built on top of lower-level terms. For example, the integer

formula φ ≡ x > 1 ∧ y < 2 consists of two atoms, where the atom

x > 1 consists of two terms x and 1.

Algorithm 1 describes the process to build a formula snippet.

The function random_select randomly picks one element from a set.

The function smt_expr takes as input the operator and operands,

and returns an SMT expression. We omit the details of the functions

as their implementations are straightforward.

At a high level, Algorithm 1 works in a top-down manner. At

the top, we rst randomly choose a Boolean connective, e.g., nega-

tion, conjunction, and disjunction (line 2). We then proceed to

build the atoms. To generate an atom, the function generate_atom
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Algorithm 1: Generating an integer formula snippet.

Input: A seed integer formula φ
Output: A new formula snippet

1 Function generate_formula_snippet(φ)
2 op ← random_select({none,¬,∧,∨,→,xor });
3 if op == none then
4 return generate_atom(φ);

5 else if op == ¬ then
6 l ← generate_atom(φ);

7 return smt_expr(op, l );

8 else
9 l1 ← generate_atom(φ), l2 ← generate_atom(φ);

10 return smt_expr(op, l1, l2);

11 Function generate_atom(φ)
12 op ← random_select({<, ≤, >, ≥,=,,});
13 t1 ← generate_term(φ), t2 ← generate_term(φ);

14 return smt_expr(op, t1, t2);

15 Function generate_term(φ)
16 op ← random_select({+,−, ∗, /});
17 v1 ← random_select(vars (φ));
18 if φ in linear arithmetic and op ∈ {∗, /} then
19 v2 ← randomly generate a constant ;

20 else
21 v2 ← random_select(vars (φ));

22 return smt_expr(op,v1,v2);

(line 11-line 14) rst synthesizes two integer terms using the func-

tion generate_term (line 15-line 22), and then relates the terms with

an integer predicate symbol, e.g., <, ≤ and >. Note that when the

seed formula is in the theory of linear integer arithmetic, we should

not synthesize non-linear terms such as x ∗ y and x/y. Thus, to
avoid generating such terms, the function generate_term restricts

the second operand v2 to an integer constant, when the randomly

selected operator is ∗ or / (line 19).

Example 4.4. In the following formula pair, φ ′ over-approximates

φ. The mutant φ ′ is obtained by replacing y = z by y = z ∨

x + z < y − 1 xor y − z ≥ 2 ∗ x , where the shaded part is a ran-

domly generated formula snippet.

φ ≡ (x > y ∨ · · · ) ∧ y = z

φ ′ ≡ (x > y ∨ · · · ) ∧ (y = z ∨ x + z < y − 1 xor y − z ≥ 2 ∗ x )

Remarks. First, in principle, one can generate and inject new

formulas that are arbitrarily large and complex. However, gener-

ating such formulas can be time-consuming. Second, the mutants

generated by LPI are not necessarily in CNF. By denition, CNF

formulas only contain three Boolean connectives, i.e., ∧,∨, and ¬,

while LPI can use other Boolean connectives such as xor and→.

4.3 Bug Detection with Sparrow
Based on the principle introduced in § 4.1 and the mutation strate-

gies presented in § 4.2, we have designed and implemented Sparrow,

a tool for stress-testing SMT solvers.

Bug Types. Sparrow can detect three categories of bugs: (1)

soundness bugs: the solver returns “unsat” for satisable formulas,

or returns “sat” for unsatisable formulas; (2) invalid model bugs:
a formula is satisable and the solver returns “sat”, but the solver

yields an infeasible model that falsies the formula; and (3) crash
bugs: the solver terminates abnormally when solving a formula,

which can be caused by some internal assertion failures or memory

safety problems such as buer overow. We refer to the rst two

categories as the correctness bugs.

Algorithm. Algorithm 2 shows the general workow of Spar-

row, which takes as input a set of seed formulas and an SMT

solver under test. The three sets soundness_bugs, model_bugs, and
crash_bugs are used to collect soundness, invalid model, and crash

bugs, respectively (line 2). In each round of the loop, we rst ran-

domly choose a formula φ from the seeds, convert it into CNF, and

pass the CNF formula to the SMT solver. If the solve yields “sat”, we

generate a mutant φ ′ by over-approximating φ (line 10). Otherwise,

we obtain a mutant φ ′ by under-approximating φ (line 12). We

then invoke the solver to solve the mutant, and check whether it

gives a consistent answer or not. If not, we have found a candidate

soundness bug (line 15). If the answer is consistent and “sat”, but

the solver returns a model that falsies φ ′, we have found an invalid
model bug (line 19). Finally, if the solver crashes on the mutant, we

have found a candidate crash bug (line 21).

In Algorithm 2, the two sub-procedures over_approximate and
under_approximate can be implemented using the rules presented

in § 4.2. Briey, to approximate a CNF formulaφ, we randomly select

a subset of literals from lits (φ), and then apply the corresponding

literal-level mutations. Note that, to guarantee the correctness, the

approximation type for a formulas’ literals should be the same. For

example, if we over-approximate one literal but under-approximate

the other, it would be hard to gure out whether the solution space

of the CNF formula is enlarged or reduced. Consequently, we cannot

ensure whether the nal mutant over- or under-approximates the

seed formula.

Implementation. We have implemented Sparrow in 9,440 lines

of Python code, which instantiates Algorithm 2 as follows. First, we

convert a seed formula into CNF using Tseitin [54]’s CNF transfor-

mation algorithm, whose time complexity is linear in the formula

size. Second, for each seed formula, we generate 300 mutants by

default (line 8). Third, since the number of literals in a formula can

be gigantic, in practice, we bound the number of mutated literals

in each mutant as 5. To mutate each selected literal, we randomly

apply one applicable strategy from PST (§ 4.2.1) and LPI (§ 4.2.2).

After collecting the candidate bugs, we reduce the sizes of the

bug-revealing formulas via delta debugging [63]. We have auto-

mated the test case reduction, using ddSMT [2] and pyDelta [3], two

open-source delta debuggers for the SMT-LIB2 language. Finally,

we contact the solver developers to conrm the bugs.
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Algorithm 2: Testing SMT solvers via approximation.

Input: A set of seed formulas Seeds and an SMT solver S
Output: The candidate bugs

1 Procedure test_smt_solver(Seeds, S)
2 soundness_buдs ← ∅,model_buдs ← ∅, crash_buдs ← ∅;

3 while some budget is not reached do
4 φ ← randomly select a formula from Seeds;

5 φ ← transform φ into CNF;

6 res ← solve φ with the solver S ;

7 /* generate n equi-satisfiable mutants */

8 for i = 1 to n do
9 if res == “sat” then

10 φ ′ ← over_approximate(φ);

11 else
12 φ ′ ← under_approximate(φ);

13 res ′ ← solve φ ′ with the same solve S ;

14 if res ′ , res then
15 soundness_buдs ← soundness_buдs ∪ {φ ′};

16 else if res ′ == “sat” then
17 M ← a model of φ ′ returned by S ;

18 if M does not satisfy φ ′ then
19 model_buдs ←model_buдs ∪ {φ ′};

20 else if S crashed then
21 crash_buдs ← crash_buдs ∪ {φ ′};

22 return soundness_buдs ∪model_buдs ∪ crash_buдs;

5 EVALUATION
To evaluate the eectiveness of skeletal approximation enumera-

tion, we conduct two sets of experiments. In the rst experiment,

we examine the eectiveness of Sparrow in nding bugs in Z3 and

CVC4. In the second experiment, we compare Sparrow with two

existing techniques [59, 60] regarding performance, code coverage,

and bug nding.

5.1 Experimental Setup
Tested Solvers. We have selected Z3 [28] and CVC4 [11], the

two most popular SMT solvers for the experimental evaluation. We

choose the solvers by following four criteria. First, they have been

widely used in both academia and industry. Second, they support

most of the theories in the SMT-LIB2 standard [12]. Third, they

show a state-of-the-art performance, i.e., regularly achieve high

ranks in SMT-COMP [4], the annual SMT competitions. Finally, they

are mature and have been extensively tested by previous works [15,

19, 39, 48, 59, 60], which means nding their bugs is challenging.

We mainly focus on testing the default modes of the solvers. For

CVC4, we use the options --produce-models, --incremental and
--strings-exp as needed to support all the seeds. To detect invalid
model bugs, we have supplied the --check-models option to CVC4
and the model.validate=true option to Z3.

Seeds Selection. The seed formulas come from two sources: (1)

the regression test suits of several open-source SMT solvers, in-

cluding Z3, CVC4, Yices2, and OpenSMT [5–8], and (2) the SMT-

LIB2 standard benchmark suite maintained by the SMT-LIB Ini-

tiative [12]. After collecting the formulas, we preprocess them as

follows. First, we use Z3’s “simplify” tactic to lter out formulas

that are trivially satisable (e.g., p∨¬p) or unsatisable (e.g., 1 > 2).

These formulas can often be instantly solved in the simplication

phase of SMT solvers, which may make our mutations futile. Next,

we exclude formulas that cannot be solved by Z3 and CVC4 within

5 seconds, to improve the testing throughput.

Environment. All the experiments are conducted on a Linux

workstation with an 80 Core Intel(R) Xeon(R) 2.20GHz processor

and 256 GB RAM. We compile Z3 and CVC4 using gcc-5.4.0, with

assertions and AddressSantizer [49] enabled. We use Gcov [52] to

measure the code coverage. All the tools are set to run in single-

threaded mode. For each of the experiments, we perform ten inde-

pendent runs and report the average results.

5.2 Results of Bug Finding
In this section, we present some statistical analyses of the bugs

found by Sparrow. All the bug reports are publicly available at the

site in [9].

Bug Count. Table 3 summarizes the status of the bugs. “Re-

ported” represents the number of reported bugs; “Conrmed” rep-

resents the bugs that the developers conrm as real and unique;

“Fixed” represents the xed bugs; “Duplicate” represents the bugs

that the developers identify as duplicates; and “Won’t x” repre-

sents the bugs that the developers reject to x. Overall, Sparrow

nds 71 previously unknown, unique, and conrmed bugs in Z3

and CVC4, which are missed by the solver developers, users, and

regression testing. By the time of writing, 77.5% (55 out of 71) of

the conrmed bugs had already been xed.

Won’t x Bugs. Some bugs are marked as “won’t x” mainly

due tomiss-congurations, i.e., improper options are supplied to the

solver. For example, in a Z3 bug report, the developer commented

that “I am going to skip these bugs on strings tweaking strange con-
guration parameters”.

Aected Theories. Sparrow can nd bugs in dierent SMT-LIB2

theories, such as integers, reals, bit-vectors, oating points, strings,

and the combinations of these theories. Figure 1 presents the distri-

bution of logic types among the conrmed bugs. Among the top-3

most frequent theories in Z3 are integers, strings, and bit-vectors.

Among the top-3 most frequent theories in CVC4 are integers,

strings, and reals. We observe that most of the bug-triggering in-

teger formulas are non-linear. The results indicate that decision

procedures for non-linear integer arithmetic and strings are among

the weak components in SMT solvers.

Bug Types. Table 4 shows the distribution of bug types among

the conrmed bugs. The most common bug category is crash bugs

(41 out of 71), followed by invalid model bugs (22) and soundness

bugs (8). In summary, 42.3% (30 out of 71) of the conrmed bugs

are correctness bugs (including soundness bugs and invalid model
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Figure 1: Top-3 theory type of the conrmed bugs.

Table 3: Status of the bugs found by Sparrow.

Status Z3 CVC4 Total

Reported 38 46 84

Conrmed 29 42 71

Fixed 25 30 55

Duplicate 2 2 4

Won’t x 7 2 9

Table 4: Bug type of the conrmed bugs.

Type Z3 CVC4 Total Fixed

Soundness 4 4 8 7

Invalid model 10 12 22 16

Crash 15 26 41 32

bugs), which clearly demonstrates the strength of Sparrow in nd-

ing logic issues in SMT solvers.

Feedback of Developers. The developers of the solvers are gen-
erally responsive in xing our bug reports, which indicates that

they take our bugs seriously. For example, to quote the developers’

comments, “This is due to a fairly obscure extended equality rewrite.”
“Thanks a lot for the report. It turns out that the issue is a bit less
severe (though still pretty bad) than I rst thought.” As shown in

Table 4, among the 55 xed bugs, 23 (41.8%) are correctness bugs.

Besides, the developers have added the bug-triggering formulas to

the regression test suites of their solvers.

Taken together, we conclude that Sparrow is eective in nding

a large number of diverse bugs and its ndings are signicant.

5.3 Comparison to Existing Techniques
In this section, we present an in-depth study of the mutation strate-

gies in Sparrow, by comparing the following techniques:

• YinYang(Fusion): a metamorphic testing based approach,

where the metamorphic relation is based on the semantic

fusion strategy [60];

• YinYang(OpFuzz): a dierential testing based approach that

uses the type-aware operator mutation strategy [59] for the

input generation;

• Sparrow(PST): the variant of Sparrow that only applies the

predicate symbol transformation strategy (§ 4.2.1);

Table 5: Time (milliseconds) of generating a mutant.

Tool Avg Min Max StdDev

YinYang(Fusion) 4.5 1.9 78 3.8

YinYang(OpFuzz) 0.6 0.3 2.4 0.6

Sparrow(PST) 0.4 0.2 1.1 0.2

Sparrow(LPI) 1.3 0.6 33 2.4

Sparrow(PST+LPI) 0.7 0.2 3.2 0.5

Table 6: Number of tested mutants per hour.

Tool #Mutants

YinYang(Fusion) 10,582

YinYang(OpFuzz) 34,417

Sparrow(PST) 33,736

Sparrow(LPI) 26,676

Sparrow(PST+LPI) 32,365

• Sparrow(LPI): the variant of Sparrow that only uses the pred-

icate symbol transformation strategy (§ 4.2.2);

• Sparrow(PST+LPI): the default conguration of Sparrow.

We choose YinYang(Fusion) and YinYang(OpFuzz) because they

respectively represent the state-of-the-arts in the oracle-guided

approach and the dierential testing approach (§ 1).

We perform three experiments: (1) measuring the performance

of the tools, (2) comparing the line coverage of the solvers, and (3)

applying Sparrow to reproduce the bugs detected by YinYang. The

three experiments oer a comprehensive comparison between the

tools. To study (1) and (2), we randomly sample 1000 seed formulas,

and set each tool to generate 300 mutants per seed, following the

settings in [59]. Note that since YinYang(Fusion) [60] supports fewer

theories than YinYang(OpFuzz) [59] and Sparrow (c.f., Table 1), we

only sample seeds supported by all the tools. The timeout for the

solvers is set to 10 seconds per mutant.

Performance. First, we compare the performance of the ve

mutation strategies, in terms of the mutation cost and the overall

testing throughput.

Mutation Cost. Table 5 summarizes the statistics of the time cost.

For each tool, we report the average, minimum, maximum, and stan-

dard deviation of the time for generating one mutant. We make two

observations. First, the time cost of Sparrow to derive satisability-

preserving mutants is low. On average, it takes the three variants

of Sparrow 0.4 to 1.3 milliseconds to generate one mutant. The

speed of Sparrow(PST+LPI) lies between Sparrow(PST) and Spar-

row(LPI). Recall that PST only mutates the predicate symbols, while

LPI needs to generate a new formula snippet. Thus, Sparrow(PST)

is often faster than Sparrow(LPI). Second, the mutation speed of

Sparrow(PST+LPI) is similar to YinYang(OpFuzz), and is about 6×

faster than YinYang(Fusion).

Testing Throughput. To give a picture of the overall testing through-
put, Table 6 presents the number of tested mutants per hour. As can

be seen, YinYang(Fusion), YinYang(OpFuzz), and Sparrow(PST+LPI)

can test 10,582, 34,217, and 32,376 mutants in one hour, respectively.
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Table 7: Line coverage by mutating 1000 seeds (300 mutants
per seed). The baseline is the coverage of Z3 and CVC4 after
solving 1000 seeds (13.5% for Z3 and 8.7% for CVC4).

Tool Z3 CVC4

YinYang(Fusion) 17.3% 11.3%

YinYang(OpFuzz) 19.8% 14.2%

Sparrow(PST) 18.1% 13.3%

Sparrow(LPI)) 27.2 % 14.6%

Sparrow(PST+LPI) 27.9% 16.1%

We observe that most (> 98%) of the CPU time is taken up by the

SMT solvers. Therefore, the hardness of the mutant formulas is the

key factor of the throughput. For example, we nd that the mu-

tants generated by YinYang(Fusion) are often harder to solve than

other tools. Thus, the throughput of YinYang(Fusion) is smaller

than YinYang(OpFuzz) and Sparrow(PST+LPI).

To summarize, the mutation cost and testing throughput of Spar-

row(PST+LPI) are competitive against that of YinYang(OpFuzz).

Line Coverage. Second, we compare the line coverage improve-

ment achieved by the fuzz tools. The baseline is the line coverage of

Z3 and CVC4 after solving the 1000 sampled seeds, which are 13.5%

and 8.7%, respectively. We then use the fuzz tools to mutate these

seeds, run Z3 and CVC4 to solve the mutants, and measure the

solvers’ cumulative line coverage. For each seed, we run each tool

to produce 100 mutants. Table 7 presents the comparison results.

As can be seen, Sparrow(PST+LPI) can consistently improve the

line coverage of the solvers over YinYang. Sparrow improves the

coverage over the baseline by 14.4% for Z3 and 7.4% for CVC4, while

the best one between YinYang(Fusion) and YinYang(OpFuzz) does

by 6.3% for Z3 and 5.5% for CVC4.

Reproducing Bugs. Finally, we conduct an experiment to com-

pare YinYang and Sparrow in terms of nding correctness bugs. In

particular, we rst select all the correctness bugs that are found by

YinYang(Fusion) and YinYang(OpFuzz) in November and December

2020, and xed by the developers by the time of writing. We then

try to reproduce the bugs using Sparrow. We choose the correct-

ness bugs because, as a metamorphic testing approach, Sparrow’s

primary goal is to nd those issues. The selected bugs cover various

theories such as integers, reals, bit-vectors, and strings.

For each of the bugs, we rst remove the seeds that can directly

reveal the bug (without being mutated). We then use Sparrow to

derive mutants from all the seed formulas with the identical logic

type.
1
We set the number of mutants per seed to 300 and repeat the

generation process 100 times. Then, the comparison proceeds as

follows. We rst check whether Sparrow can generate re-triggering

mutants from the seeds or not. If yes, we then check whether Spar-

row actually re-triggers the same bug. To achieve this goal, we run

the bug-revealing mutants against the rst solver commit ID with

the corresponding x. If the solver now answers correctly for the

mutants, we count the bug as successfully re-triggered.

1
To oer an apples-to-apples comparison, we should have used the same seed for each

bug. However, we cannot know which seed YinYang has used to trigger a bug.

Sparrow(PST) Sparrow(LPI) Sparrow(PST+LPI)
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Figure 2: The results of running Sparrow to re-trigger the
19 xed correctness bugs reported by YinYang(Fusion) and
YinYang(OpFuzz) in November and December 2020.

Figure 2 presents the reproduction results. Briey, we make two

observations. First, Sparrow(PST) and Sparrow(LPI) can reproduce

3 bugs and 8 bugs alone, respectively. But there are 7 bugs that can

only be found by Sparrow(PST+LPI), i.e., the combination of the two

strategies. Second, Sparrow(PST+LPI) successfully reproduces 73.7%

(14 out of 19) the bugs. There are 5 bugs that cannot be reproduced,

because our current implementation has limited support for the

theories of recursive functions and abstract data types.

In summary, we nd that (1) Sparrow is competitive against

or complementary to YinYang(Fusion) and YinYang(OpFuzz) in

nding correctness bugs and (2) both of the two mutation strategies

in Sparrow contribute to its eectiveness.

5.4 Threats to Validity
The threat to internal validity mainly lies in the implementation of

our approach. To validate our implementation, we have used several

SMT solvers to cross-check if the mutants generated by Sparrow

are indeed the over- or under-approximations of the seed formula.

This validates the implementation to some extent. The threat to

external validity lies in the representativeness of the subjects. The

solvers we select for the evaluation are mature, widely-used, and

extensively tested by previous works [15, 19, 39, 59, 60]. The threat

to construct validity is the selection of the seed formulas and the

randomness of the mutations. To mitigate the threat, we run each

experiment ten times and use the average data.

6 DISCUSSION
Limitations of Sparrow. Our study demonstrates Sparrow’s

eectiveness for testing SMT solvers, but limitations exist in our

current implementation. First, for the predicate symbol transforma-

tion strategy (§ 4.2.1), Sparrow relies on manually given rules to

transform a literal. In the future, it would be interesting to synthe-

size new transformation rules automatically. For example, the CVC4

developers have applied syntax-guided synthesis (SyGuS) to gen-

erate term-level and equivalence-preserving rewriting rules [43].

Second, for the live predicate injection strategy (§ 4.2.2), Sparrow

can suer from performance issues if it attempts to generate a

large formula snippet. However, this limitation does not mean that

Sparrow can only generate small mutants, because it can mutate a

seed “incrementally”, i.e., approximates the mutants produced in

the previous rounds. Third, Sparrow has limited support for a few
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logics such as recursive functions and abstract data types, which

are recently introduced into the SMT-LIB2.6 standard.

Generality of SAE. Beyond SMT solver testing, skeletal approx-

imation enumeration suggests a general strategy for deriving se-

mantic approximations of a problem via (lightweight) syntactical

mutations. Specically, it can be protable to transform a seed into

some suitable representations and then design the mutation opera-

tors. There are several avenues for further exploring the applica-

bility of skeletal approximation enumeration. First, the techniques

and tools can facilitate testing other SMT solvers that take SMT-

LIB2 les as their input. Second, the general idea could be extended

to test other software systems that reason about programs’ logic

properties, such as static analyzers and program veriers.

Future Work on Automated Debugging. While the focus of

this paper is bug detection, it could be promising to use our tech-

niques to ease the automatic debugging. First, a possible future

work is to aid delta debugging. Specically, we can trace the mu-

tations made by Sparrow, and perform some backtracking of the

mutations in the stage of delta debugging. The backtracking-based

strategy could assist or complement existing general-purpose delta

debuggers. Second, showing the minimal dierences to seed formu-

las that trigger bugs is helpful for the developers to understand the

bugs. Thus, providing the minimal literal-level mutations and the

original seed in the bug report would be another potential direction

to assist debugging.

7 RELATEDWORK
SMT Solver Testing. FuzzSMT [19] is the rst grammar-based

fuzzing tool for SMT solvers. StringFuzz [15] and BanditFuzz [48]

follow the idea to test string and oating points solvers, respec-

tively. Winterer et al. [59] present a type-aware mutation strategy,

which mutates operators of conforming types within the seed for-

mulas to generate well-typed mutants. Falcon [61] explores the

combined formula-conguration space for testing SMT solvers. All

the above-mentioned techniques need to combine dierential test-

ing to nd soundness bugs. To address the test oracle problem,

several recent works generate SMT formulas whose satisability

is known by construction [22, 39, 60], which we term the oracle-

guided approach. Bugariu and Müller [22] propose an approach to

generating increasingly complex string formulas via satisability-

preserving transformations. Semantic fusion [60] fuses formula

pairs that generate mutants that are by construction either satis-

able or unsatisable. However, their implementations only support

integers, reals, and strings.
2
Storm [39] mutates the Boolean struc-

ture of a seed but can only generate satisable mutants. Compared

to the previous works, we present a new technique for the oracle-

guided approach, which applies to all theories and can generate

satisable and unsatisable mutant formulas.

Metamorphic Testing. The key idea ofmetamorphic testing [25]

is to detect violations of domain-specic metamorphic relations by

comparing the outputs between a seed test and its corresponding

mutant tests. Metamorphic testing has been successfully applied

2
Note that, in theory, it could be possible to extend the idea of semantic fusion to

support other theories.

in many application domains such as bioinformatics [26], web ser-

vices [24], compilers [36, 51], debuggers [53], databases [47], ma-

chine learning-based systems [31, 38], model counters [55], and

SMT solvers [60].

Our approach is an instance of metamorphic testing. A closely re-

lated work is semantic fusion [60], which generates equi-satisable

mutants from the concatenation of two seed formulas. Our approach

diers in two aspects. First, semantic fusion mutates variables using

the fusion functions, which can only introduce new variables and

function symbols in the mutants. In comparison, skeletal approxi-

mation enumeration can inject formula snippets, which can contain

new variables, function symbols, predicate symbols, and Boolean

connectives. Second, semantic fusion requires that the two seeds

are both satisable or unsatisable. In comparison, our algorithm

does not assume that the satisability of the seeds is known prior,

as it determines the mutation strategy according to the solving

result of the SMT solver under test.

Mutation-based Testing. A common technique for input gen-

eration is to mutate the seed corpus. For example, American fuzzy

lop (AFL) [1] is a well-known security-oriented fuzzer, which em-

ploys bit-level and byte-level mutations to generate new test cases.

However, such an ecient input generation approach cannot han-

dle inputs with a highly formatted structure or grammar. Thus,

grammar-aware mutation-based fuzzing has been proposed. Supe-

rion [56], AFLSmart [46], and Nautulius [10] are general grammar-

aware grey-box fuzzers that employ AST-based mutations, and

use code coverage to guide the mutations. CodeAlchemist [34]

preserves the semantic requirement, e.g., type correlation, as the

constraint during input generation. Zest [44] combines the coverage

feedback with property-based testing to provide better guidance for

seed prioritization. In comparison, our approach can be regarded as

an instance of grammar-aware mutation. Specically, Sparrow not

only generates syntactically correct mutants but also guarantees

their satisability results, which can serve as the ground truth for

nding correctness bugs.

8 CONCLUSION
This paper presents skeletal approximation enumeration, a new

methodology for testing SMT solvers. Our approach helped dis-

cover 71 conrmed bugs in Z3 and CVC4, two state-of-the-art and

comprehensively tested SMT solvers. More than 50 of the bugs have

been xed, and a signicant fraction of them are correctness bugs.

Our technique is general and may be adapted to other constraint

languages (such as Datalog and MiniZinc) and settings (such as

static analyzers and model checkers).
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